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This special issue of the Journal of Applied Mechanics contains
19 articles originally presented at ENIEF 2004, the XIV Congress
on Numerical Methods and Their Applications, held in San Carlos
de Bariloche, Argentina, on November 8—11, 2004. The first Con-
gress in this series was held in 1983. Participation has grown
consistently since then, with the 14th Congress attracting over 300
contributing participants—mainly from North and South America
and Europe.

Some selected contributions to ENIEF 2004 were expanded and
improved by their authors for consideration for this special issue.
These submissions were then reviewed by the Guest Editors, and
some were then sent out for external reviews. The usual ASME
rules governing the selection of journal articles were applied
throughout. The outcome of the review process is the 19 articles
appearing in this issue.

The topics covered in this issue fairly represent the areas cov-
ered by the Association of Computational Mechanics of Argen-
tina. We feel that they will also be of interest to the applied me-
chanics community at large.

There are nine articles from the field of solid mechanics. They
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deal with fiber-reinforced composites, fracture, finite deformation,
localization, solid mechanics, and plate tectonics.

There are seven articles from the field of fluid mechanics. They
deal with velocity-vorticity numerical formulations, prediction of
stability boundaries, density currents, internal combustion, and
free-surface flows.

The three remaining articles address the simulation of solidifi-
cation and heat treatment of metals, and fluid-structure interac-
tions.

It is our hope that the readers of the Journal of Applied Me-
chanics will find the width and depth of the coverage in this
special issue of interest. We are indebted to the numerous anony-
mous reviewers who participated in the editorial process: Their
critical but helpful reviews greatly aided the authors and the Guest
Editors in maintaining the high standards expected in ASME jour-
nal publications. We are also grateful to the Editor of the Journal
of Applied Mechanics for entertaining the proposal of this special
issue.

Gustavo Buscaglia
Bassam A. Younis
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Craters Produced by Explosions
on the Soil Surface

Explosives are commonly used in terrorist attacks and the craters formed by blast waves
can be used as a diagnostic tool. For example, the focus of the explosion and the mass of
the explosive used in the attack can be deduced by examining the location, geometry, and

dimensions of the crater. However, studies about craters produced by explosions on or
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1 Introduction

Blasting loads have come to be forefront of attention in recent
years due to a number of accidental and intentional events that
affected important structures all over the world, clearly indicating
that this issue is important for purposes of structural design and
reliability analysis. In consequence, extensive research activities
in the field of blast loads have taken place in the last few decades.

Dynamic loads due to explosions result in strain rates of the
order of 107! to 103 s~! which imply short time dynamic behavior
of the materials involved, characterized mainly by a great over-
strength and increased stiffness, in comparison with normal, static
properties. In the case of soils, the response and the mechanism of
crater formation are particularly complex due to the usual aniso-
tropy and nonlinear nature of the material, and to the variability of
mechanical properties and coexistence of the three phases: solid,
liquid, and gaseous. Generally, simplifying assumptions must be
made in order to solve specific problems. Until now, most practi-
cal problems have been solved through empirical approaches.
Years of industrial and military experience have been condensed
in charts or equations [1,2]. These are useful tools, for example, to
establish the explosive weight to yield a perforation of certain
dimensions or to estimate the type and amount of explosive used
in a terrorist attack, from the damage registered. Most research is
related to underground explosions and only a few papers are con-
cerned with explosions at ground level. Studies about craters pro-
duced by explosions above ground level, which would be the case
when the explosive charge is situated in a vehicle, are rarely found
in the open technical literature. Some reports are classified and
access is limited to government agencies.

Most of the information about explosively formed craters found
in the literature is based on experimental data. Numerical studies
were scarce until recently.

However, with the rapid development of computer hardware
over the last years, it has become possible to make detailed nu-
merical simulations of explosive events in personal computers,
significantly increasing the availability of these methods. New

'To whom correspondence should be addressed.

Contributed by the Applied Mechanics Division of ASME for publication in the
JOURNAL OF APPLIED MECHANICS. Manuscript received May 23, 2005; final manuscript
received December 20, 2005. Review conducted by G. C. Buscaglia. Discussion on
the paper should be addressed to the Editor, Prof. Robert M. McMeeking, Journal of
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accepted until four months after final publication of the paper itself in the ASME
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above ground level, which would be the case when the explosive charge is situated in a
vehicle, are rarely found in the open technical literature. In this paper, a numerical study
on craters formed by explosive loads located on the soil surface is presented. The soil
parameters used in the numerical model, as well as the analysis procedure, were vali-
dated against experimental observations of the crater diameters. Results of numerical
tests performed with different amounts of explosive on the soil surface are presented.
Moreover; the effect of elevation of the center of energy release of explosive loads located
on the soil surface is analyzed and discussed. Simple predictive equations for the crater
diameter are presented. [DOI: 10.1115/1.2173283]

developments in integrated computer hydrocodes complete the
tools necessary to carry out the numerical analysis successfully.
Nevertheless, it is important to be aware that both these models
and analysis procedures still need experimental validation.

The main objective of this paper is to propose a simple rela-
tionship between the mass and location of the explosive used and
the diameter of the generated crater, which is sometimes an easy-
to-measure parameter. A numerical study related to craters pro-
duced by explosive charges located on the soil surface is pre-
sented in this paper. The analysis is performed with a hydrocode
and material models and analysis procedures are validated with
experimental results. Additionally, the crater diameters for explo-
sive charges of up to 500 kg of TNT situated on the ground at the
ground level are obtained. The effect of elevation of the center of
energy release of explosive loads located on the soil surface is
analyzed and discussed. All the results are compared with empiri-
cal equations used nowadays for the prediction of crater dimen-
sions and new simple equations are proposed.

2 Theory and Previous Results

2.1 Crater Formation. A crater produced by an explosive
charge situated on or above the ground level is schematized in
Fig. 1. The crater dimensions defined by Kinney and Graham [3]
are used in this paper (Fig. 1): D is the apparent crater diameter,
D, is the actual crater diameter, and H, is the apparent depth of
the crater. The depth of the crater created by an explosion ordi-
narily is about one-quarter of the diameter of the crater, but this
ratio depends on the type of soil involved. The diameter of the
crater produced by an explosion also depends on the relative lo-
cation of the explosive charge from the ground level. Thus, explo-
sions above surface level may not create any crater at all [3].

Tests of crater formation are appropriate tools to study the blast
phenomena, the behavior and destructive power of different ex-
plosives, and the response of soils and rocks under this type of
load [4]. The mechanism of crater formation is complex and it is
related to the dynamic physical properties of air, soil, and soil-air
interface. Even very carefully performed cratering tests give de-
viations in the dimensions measured of the order of 10%, while
differences of as much as 30% to 40% are common [5].

A cavity is always formed when a confined explosion is pro-
duced in a mass of soil. If the explosion is close to the surface, a
crater is formed and a complex interaction between gravity ef-
fects, soil strength, and transient load conditions takes place. The
most important variables in defining the crater shape and size are
the mass W of the explosive and the depth of the detonation be-
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neath the air/soil interface d. When d <0, the explosive is deto-
nated over the air/soil interface, d=0 when the detonation occurs
in the air/soil interface, and d >0 when the explosive is detonated
beneath the soil surface. For d> 0, the crater mechanism is altered
by gravitational effects. When the depth of the detonation in-
creases, larger amounts of subsoil must be expelled by the explo-
sion. Thus, the crater radius and the depth of the crater increase
when d increases, until a certain limit value, from which they
rapidly decrease [5].

Studies concerned with the characteristics of craters caused by
explosions usually resort to dimensional analysis and statistics.
The scaling law establishes that any linear dimension “L” of the
crater can be expressed as a constant multiplied by W* divided by
the distance of the charge from the ground, where W represents
the equivalent TNT mass of explosive and « is a coefficient that is
dependent on whether the gravitational effects can be neglected or
not. When the gravitational effects can be neglected the cubic root
law is applicable («=0.33) and in the other cases the functional
dependence can be quite complex.

Baker et al. [6] present a dimensional study to model the crater
formation phenomenon in the case of underground explosions. Six
parameters are chosen to define the problem: the explosive mass
W, the depth of the explosive charge d, the apparent crater radius
R, the soil density p, and two strength parameters to define the soil
properties: one with the dimensions of stress o, related to soil
strength, and the other with the dimensions of a force divided by
a cubic length (Nm—)K, which takes into account gravitational
effects.

After a dimensional analysis and many empirical observations,
the following functional relation may be obtained [6].

R W7/24
; =f( 0.1/6Kll8d)

If R/d (scaled radius of the crater) is plotted as a function of
W7'24/d [6], it can be seen that this relation is close to experimen-
tal results and can be approximately simplified by two straight
lines, one with a moderate slope for W”/4/d>0.3 and one steeper
for W24/d<0.3. For W"?*/d< 0.3, the scaled radius of the cra-
ter is sensitive to small changes in the independent parameter and,
due to this fact, the independent parameter or the scaled radius
may exhibit great variability. Experimental conditions are better
controlled for W72*/d>0.3.

It can be deduced [6] that the specific weight pg is the best
measure for K and that pc? is the best measure for o, where ¢ is
the seismic velocity in the soil. If experimental results for differ-

(1)

Journal of Applied Mechanics

Apparent depth
of detonation

Fallback

Rupture zone

Definitions of the crater dimensions

ent types of soils are plotted in a R/d vs. W'/ p"* 18341184

graph, it may be clearly seen that there is very little variability in
the results.

The preceding paragraphs refer to underground explosions.
There is less information about explosions at ground level. Statis-
tical studies of about 200 accidental above-ground explosions of
relatively large magnitude are presented by Kinney and Graham
[3]. The results exhibit a variation coefficient in the crater diam-
eter of about 30%. From these results, the following empirical
equation for the crater diameter was proposed.

D(m) =0.8W (Kg)' (2)

Additional experimental evidence was obtained during the sur-
face explosions performed by EMRTC (Energetic Materials Re-
search Center of the Mineralogical and Technologic Institute of
New Mexico). EMRTC conducted experimental determinations to
explore alternative ways of controlling the blasting power. In this
program, the explosion of 250 kg of TNT situated at ground level
formed a 3.8 m diameter crater.

In connection with the morphological and structural types of
the craters, Melosh [7] determine four different basic types: (a)
bowl-shaped, (b) flat-floored with central uplift, (c) flat floored
with a peak ring, and (d) flat floored with >2 asymmetric rings
(multiring basins). One of the factors that determine the shape is
the height of burst. On the other hand, numerical and independent
research results presented by Iturrioz et al. [8] confirm preliminar-
ily the formation of the same shapes of craters. Additionally, there
are important contributions in the literature related to cratering
studies, but many of them are about predicting rock damage, for
example, works by Yang et al. [9], Liu and Katsabanis [10], and
Wu et al. [11], and others are related with buried explosions, for
example, works by Wang and Lu [12] and Zhou et al. [13].

2.2 Experimental Tests. In a previous paper, Ambrosini et al.
[14] presented the results of a series of tests performed with dif-
ferent amounts of explosive at short distances above and below
ground level, as well as on the soil surface. These results were
used in the present paper to calibrate the soil parameters of the
numerical model as well as to validate the analysis procedure. The
description of the test will be summarized in this point.

The tests were performed in a large flat region, without rock
formations, normally used for agriculture. Two exploratory drill-
ings and two test pits were used to determine the mechanical
properties of the soil. The exploratory holes were drilled to depths
of 2 and 5 m, respectively, with standard penetration tests (SPTs)
performed at 1 m intervals. The test pits were dug to a depth of

NOVEMBER 2006, Vol. 73 / 891

Downloaded 04 May 2010 to 171.66.16.29. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Table 1 Soil properties of experimental tests—drilling S-1. WD: wet density; DD: dry density; w: moisture content; T200: per-
centage that passes through sieve 200; LL: liquid limit; Pl: plastic index; Clas. /UCS: classification according to UCS; (1) 0 to
0.70 m: Brown clayey silt with organic matter; (2) 0.70 to 5.0 m: Reddish brown clayey silt of low plasticity, classification CL, very

dry
SPT tests
Free

Depth water Type of Depth WD DD LL PI Clas.
(m) level soil (m) N (t/m?) (t/m?) w T200 (%) (%) JUCS
0.7 (1) 0.5-1.0 6 1.25 1.14 9.6 87 28.1 12.3 CL

without
1.0 free 1.5-2.0 12 1.43 1.27 12.7 91 27.9 8.6 CL
2.0 water
3.0 surface 2) 19.3 95 31.0 10.4 CL
4.0
5.0 End of the drilling

2 m in order to collect undisturbed soil samples for triaxial testing  classification CL, very dry.

and for a more precise determination of the in situ density. Partial The crater tests were performed in a selected 40 X 50 m? area.

results of the soil tests are presented in Table 1. The soil profile A grid with 10 m spacing was used to locate the explosive charges

was quite uniform in the entire 40X 50 m?, testing area, being  at its nodes, as shown in Fig. 2. Each row of the grid corresponded

characterized by: to loads of the same magnitude. Charges equivalent to 1, 2, 4, 7,
1) 0 to 0.70 m Brown clayey silt with organic matter. and 10 kg of TNT were located on the five rows. All the charges
2) 0.70 to 5.0 m Reddish brown clayey silt of low plasticity, were spherical. In the first two columns indicated as “A” in Fig. 2,

k@ — OO ¢ ¢ @ -
7 kg @ L e @
A B C
41 k30— — 00— 40 m
2k@g—9— 000 ¢
1 kg@— @ N S 4
: | |
! | |
10 m b |
1*line of 5 m
SEnsors fl)Oﬁn
................ [-*
i
| 120 m
2 fine of *
SE0. 5015 ;
____________ 5 ‘ L
| 0o
34 fige of al U i
SEnSOrs I I .l ‘I I 1 \
REFERENCES

M Acceleration transducers

B Pressure transducers

uka Data acquisition equipment

A= 2 Series at ground level

B = 2 Series at 50 cm over the ground level

C =1 serie @ at lm over the ground level and 1 serie & at lm underground

Fig. 2 Loads and measurement equipment locations
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Fig. 3 Superficial explosion crater obtained in a test

the explosives were situated tangential to the surface. In the fol-
lowing columns designated as “B” in Fig. 2, the explosives were
located 0.5 m above ground level. Finally, in the last two columns
indicated as C1 and C2 in Fig. 2, the loads were situated 1 m
above ground level and 1 m underground, respectively. The
charges above ground level were located hanging on wood tri-
pods. The explosive used in the tests was Gelamén 80, a NG
based gelatinous explosive theoretically equivalent in mass to
80% TNT.

The following comments apply to the craters size measurement
procedure:

a. The apparent crater diameter D (Fig. 1) was measured
in all cases according to the definition given by Kin-
ney and Graham [3].

b. Three measurements of the crater diameter and three
of the crater depth were performed (Fig. 1).

c. In general, the craters produced by explosives situated
at ground level presented a small mound in the center
formed by the loose soil that fell down on the site
after the explosion.

d. The shape of most of the craters was flat-floored with
central uplift.

As illustration, the crater due to a surface explosion is shown in
Fig. 3. The results about the dimensions of the craters are pre-
sented in Ambrosini et al. [14].

3 Numerical Model

3.1 Introduction and Numerical Tool. Computer codes nor-
mally referred as “hydrocodes” encompass several different nu-
merical techniques in order to solve a wide variety of nonlinear
problems in solid, fluid, and gas dynamics. The phenomena to be
studied with such a program can be characterized as highly time
dependent with both geometric nonlinearities (e.g., large strains
and deformations) and material nonlinearities (e.g., plasticity, fail-
ure, strain hardening and softening, and multiphase equations of
state). Different numerical tools are used in some papers in order
to solve similar problems of crater determination, for example,
ABAQUS [9], AUTODYN [11,12], SALE2D [15,16], and cTH [17].

In this paper, the program AUTODYN-2D [18], which is a “hydro-
code” that uses finite difference, finite volume, and finite element
techniques to solve a wide variety of nonlinear problems in solid,
fluid, and gas dynamics, is used. The various numerical processors
available in AUTODYN generally use a coupled finite difference/
finite volume approach similar to that described by Cowler and
Hancock [19]. The first-order Euler approach scheme is based
upon the method developed by Hancock [20].

While finite element codes are usually based on the equilibrium
condition, the hydrocode utilizes the differential equations gov-
erning unsteady material dynamic motion: the local conservation
of mass, momentum, and energy. In order to obtain a complete
solution, in addition to appropriate initial and boundary condi-
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tions, it is necessary to define a further relation between the flow
variables. This can be found from a material model, which relates
stress to deformation and internal energy (or temperature). In most
cases, the stress tensor may be separated into a uniform hydro-
static pressure (all three normal stresses equal) and a stress devia-
toric tensor associated with the resistance of the material to shear
distortion.

The relation between the hydrostatic pressure, the local density
(or specific volume), and local specific energy (or temperature) is
known as an equation of state. Since solids are able to withstand a
certain amount of tensile stress, it is necessary to consider extend-
ing the equations of state into limited regions of negative values
of the pressure (tension). However, since the analytic forms de-
rived for ranges of positive pressure may not be valid for extrapo-
lation into the negative regions special attention should be paid in
using some forms of equation of state. The hydrodynamic tensile
limit, sometimes referred to as pp;,, 1S the minimum pressure at
which the material can sustain continuous expansion. If the mate-
rial pressure drops below this limit in a cell, it is assumed that the
material will fracture or in some way lose its uniform and con-
tinuous ability to sustain a tensile pressure. This would then form
the lower limit of the analytic equation of state. Regardless of the
definition of a value of p,;,, it may be necessary to provide a
different analytic form for negative pressure values from that used
for positive values (but taking care to ensure continuity of func-
tion and derivatives at p=0).

While there are many problems that can be calculated using a
hydrodynamic equation of state, there are many applications
where material strength effects (i.e., its resistance to shearing
forces) cannot be ignored and indeed may even dominate. If the
material is solid and has finite shear strength, then, in addition to
the calculation of the hydrostatic pressure, it is necessary to define
relations between shear stress and strain. The methodology fol-
lowed in this paper is that first one formulated by Wilkins [21] to
extend conventional numerical hydrodynamic codes to include the
effects of material strength and resistance to shear distortion.

A relation to define the transition between elastic and plastic
strain, both in compression and release, and a relation to define
the onset of fracture are also required. The yield criterion govern-
ing the transition from elastic to plastic behavior may involve only
constant yield strength, or this strength may itself be a function of
the degree of strain (work hardening), the rate of strain, and/or the
temperature of the material (energy dependency).

Real materials are not able to withstand tensile stresses that
exceed the material local tensile strength. The computation of the
dynamic motion of materials assuming that they always remain
continuous, even if the predicted local stresses reach very large
negative values, will lead to unphysical solutions. For this reason
the model has to be constructed to recognize when tensile limits
are reached, to modify the computation to deal with this, and to
describe the properties of the material after this formulation has
been applied.

3.2 Numerical Mesh. A Euler formulation is used to model
both air and soil in this paper. The Euler solver uses a fixed nu-
merical mesh where the physical material flows through the mesh.
Free surfaces and material interfaces can move through the fixed
Euler mesh. Because the mesh is fixed, large material deforma-
tions are easily handled. Limiting numerical diffusion requires
complex computations to accurately maintain material interfaces.
AUTODYN is able to model the strength and failure of materials
with the Euler solver.

In Euler processors, a control volume method is used to solve
the equations that govern conservation of mass, momentum, and
energy. The finite volume method is a method for representing and
evaluating partial differential equations as algebraic equations.
Similar to the finite difference method, values are calculated at
discrete places on a meshed geometry. “Finite volume” refers to
the small volume surrounding each node point on a mesh. In the
finite volume method, volume integrals in a partial differential
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Fig. 4 Numerical model for explosives charges situated on the
ground level: (a) mesh and (b) material location

equation that contain a divergence term are converted to surface
integrals, using the divergence theorem. These terms are then
evaluated as fluxes at the surfaces of each finite volume. Because
the flux entering a given volume is identical to that leaving the
adjacent volume, these methods are conservative. Another advan-
tage of the finite volume method is that it is easily formulated to
allow for unstructured meshes. The method is used in many com-
putational fluid dynamics packages.

In AUTODYN the integral and discrete forms of the problem
equations are expressed in conservation form to obtain accurate,
stable solutions. Terms producing changes in conserved variables
are divided into two groups: Lagrangian or transport (convective).
A two-step numerical procedure is used to solve the finite-
difference equations. In the first step, the Lagrange step, the La-
grangian forms of the equations are updated or advanced one time
interval (time step). In the second step, the Euler step, the updated
variables are mapped onto the Euler mesh. Multiple materials are
handled through either a volume fraction technique or an interface
technique originally developed by Youngs [22]. All variables are
cell centered. This allows arbitrarily shaped control volumes to be
formed more readily at the interface between Euler and Lagrange
grids, facilitating the computation of fluid-structure or gas-
structure interaction problems.

The use of symmetry conditions allows using a two-
dimensional (2D) mesh considering axial symmetry. The number
of cells required to produce accurate solutions is greatly reduced
when compared with a full 3D model. The mesh used for explo-
sive charges situated on the ground level is shown in Fig. 4(a).
The mesh was filled with different materials: air, TNT, and soil,
indicated in Fig. 4(b).

In the case of charges of 1 to 10 kg of TNT a 6 X 12.5 m? mesh
was used, while a 10X 12.5 m> mesh was used for charges of
50 kg of TNT or greater.

3.3 Materials Models. All the terms in the equations pre-
sented in this section could be in any congruent system units, but
the SI units are recommended.

3.3.1 Air. The ideal gas equation of state was used for the air.
This is one of the simplest forms of the equation of state for gases.
In an ideal gas, the internal energy is a function of the temperature
alone and, if the gas is polytropic the internal energy is simply
proportional to temperature. It follows that the equation of state
for a gas, which has uniform initial conditions, may be written as,
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Table 2 Material properties for air

EOS: Ideal gas

y=14

Reference density: p,=1.225X 1073 g/cm?
Reference temperature: 7,=288.2 K
Specific heat: ¢,=717.3 J/kgK

p=(y=-1)pe (3)

in which p is the hydrostatic pressure, p is the density, and e is the
specific internal energy.

v is the adiabatic exponent, it is a constant equal to 1+R/c,,
where constant R may be taken to be the universal gas constant R
divided by the effective molecular weight of the particular gas and
¢, 1s the specific heat at constant volume. The values of the con-
stants used for air are presented in Table 2.

3.3.2 TNT. High explosives are chemical substances which,
when subject to suitable stimuli, react chemically, very rapidly (in
order of microseconds) releasing energy. In the hydrodynamic
theory of detonation, this very rapid time interval is shrunk to zero
and a detonation wave is assumed to be a discontinuity which
propagates through the unreacted material, instantaneously liber-
ating energy and transforming the explosive into detonating prod-
ucts. The normal Rankine-Hugoniot relations, expressing the con-
servation of mass, momentum, and energy across the
discontinuity, may be used to relate the hydrodynamic variables
across the reaction zone. The only difference between the
Rankine-Hugoniot equations for a shock wave in a chemically
inert material and those for a detonation wave is the inclusion of a
chemical energy term in the energy conservation equation.

Since the 1939-1945 war, when there was naturally extensive
study of the behavior of high explosives, there has been a con-
tinuous attempt to understand the detonation process and the per-
formance of the detonation products, leading to considerable im-
provements in the equation of state of the products. The most
comprehensive form of the equation of state developed over this
period, the “Jones-Wilkins-Lee” (JWL) equation of state, is used
in this paper.

® ® we
p=C1<1——)e”1U+C2(1——)e’r2U+— (4)

v U v
where v=1/p is the specific volume, C, ry, C,, 15, and o (adia-
batic constant) are constants, and their values have been deter-
mined from dynamic experiments and are available in the litera-
ture for many common explosives. The values used for TNT are
presented in Table 3.

It can be shown (AUTODYN [18]) that at large expansion ratios
the first and second terms on the right-hand side of Eq. (4) be-
come negligible and hence the behavior of the explosive tends
towards that of an ideal gas. Therefore, at large expansion ratios,
where the explosive has expanded by a factor of approximately 10

Table 3 Material properties for TNT

EOS: JWL

Reference density p=1.63 g/cm?
C,=3.7377% 10% kPa

C,=3.73471 X 10° kPa

ri=4.15

r,=0.9

0=0.35

C-J detonation velocity: 6.93X 10 m/s
C-J energy/unit volumen: 6 X 10° KJ/m?
C-J pressure: 2.1 X 107 kPa
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from its original volume, it is valid to switch the equation of state
for a high explosive from JWL to ideal gas. In such a case the
adiabatic exponent for the ideal gas, 1y, is related to the adiabatic
constant of the explosive, w, by the relation y=w+1. The refer-
ence density for the explosive can then be modified and the ma-
terial compression will be reset. Potential numerical difficulties
are therefore avoided.

An explosion may be initiated by various methods. However,
whether an explosive is dropped, thermally irradiated, or shocked,
either mechanically or from a shock from an initiator (of more
sensitive explosive), initiation of an explosive always goes
through a stage in which a shock wave is an important feature.
The Lee-Tarver equation of state [23] was used to model both the
detonation and expansion of TNT in conjunction with the JWL
EOS to model the unreacted explosive.

3.3.3 Soil. A shock equation of state combined with an elas-
toplastic strength model based on Mohr Coulomb criterion and a
hydro tensile limit were used for the soil.

A Mie-Gruneisen form of equation of state based on the shock
Hugoniot was used (AUTODYN [18]). The Rankine-Hugoniot equa-
tions for the shock jump conditions can be regarded as defining a
relation between any pair of the variables p, p, e, u, (material
velocity behind the shock), and U (shock velocity). In many dy-
namic experiments (AUTODYN [18]) it has been found that for
most solids and many liquids over a wide range of pressure there
is an empirical linear relationship between u,, and U.

U=c,+su, (5)

in which ¢, is the initial sound speed and s is a dimensionless
parameter.

This is the case even up to shock velocities around twice the
initial sound speed ¢, and shock pressures of order 100 Gpa (AU-
TODYN [18]). In this case the equation of state is:

PoCy (1 + )

=py+Iple—- with py=—""7"5; 6
p=pu+Tple—ep) with py [1—(s— Dul’ (6)
LY T N N
2p,1+p Po

where p is the hydrostatic pressure, p, is the initial density, e is
the specific internal energy, and I is the Gruneisen gamma param-
eter and it is assumed that, I',=T",p,=const.

An elastoplastic model with Mohr Coulomb yield criterion was
used for the strength effects. This model is an attempt to repro-
duce the behavior of dry soil where the cohesion and compaction
result in an increasing resistance to shear up to a limiting value of
yield strength as the loading increases. This is modeled by a
piecewise linear variation of yield stress with pressure. In tension
(negative values of p) soils have little tensile strength and this is
modeled by dropping the curve for Y(p) rapidly to zero as p goes
negative to give a realistic value for the limiting tensile strength.

A nonassociated flow rule (Prandtl-Reuss type) that avoids the
problem of shear-induced dilatancy in soils was used. A constant
hydrodynamic tensile limit was specified as failure criterion. All
the material properties initially used for the soil model are pre-
sented in Table 4. However, a study about the variability of soil
properties is presented in Sec. 4.4.

3.4 Boundary Transmit. In order to fulfil the radiation con-
dition, a transmitting boundary was defined for air as well as soil
subgrids external limits. The transmit boundary condition allows a
stress wave to continue “through” the physical boundary of the
subgrid without reflection. The size of the numerical mesh can be
reduced by use of this boundary condition. The transmit boundary
is only active for flow out of a grid. The transmit boundary is

Journal of Applied Mechanics

Table 4 Material properties for soil

EOS: Shock Strength: Mohr Coulomb

Reference density p=1.92 g/cm?
Gruneisen gamma ['=0.11
c,=1.614X 10> m/s
S=1.5

Shear modulus G=2.0 X 10° kPa

Yield stress 1=6.2X 10 kPa
Pressure 2=1.1 X 10* kPa, Yield stress 2=6.2 X 10° kPa
Pressure 3=1.0 X 10% kPa, Yield stress 3=6.2 X 10% kPa

Hydro tensile limit p,;,=—100 kPa

Pressure 1=0 kPa,

calculated as follows.

Let the normal velocity at the boundary be U,, where U, is
positive for outflow. Then the boundary pressure (P) is computed
as follows:

for U,>0

P= Pref+ (Un - Uref)l (761)

for U, <0

P= Pref (7b)

in which P, and U, are the pressure and velocity of reference,
respectively (material model properties) and [ is the material im-
pedance (density * soundspeed). If the impedance at the boundary
is undefined, it is taken from values in adjacent cells.

4 Results and Discussion

The process of crater formation and crater dimension for explo-
sive charges up to 500 kg of TNT situated on the ground level
were analyzed with the procedure described.

4.1 Crater Formation and Wave Propagation. The process
of crater formation for a spherical explosive load of 10 kg of TNT
lying on the ground is illustrated in Fig. 5 where the soil, the
explosive (TNT), and the air are shown. It must be pointed out
that, at large expansion ratios, where the explosive has expanded
by a factor of approximately 10 from its original volume, the
equation of state for JWL was switched to ideal gas. For this
reason, the air as well as the TNT are in an ideal gas state in
Fig. 5.

It can be seen that the explosive expands its volume in the air
quickly and starts to make the crater in the solid semispace (soil).
It takes about 10 ms for the hole crater to be formed.

In Fig. 6, the final state of the crater is shown as well as a detail
of the numerical grid used for calculations. The values of the
craters diameters were measured on figures showing the final state
of the crater like Fig. 6. Comparing the crater obtained from the
numerical analysis (Fig. 6) with the theoretical crater (Fig. 1) and
the real crater (Fig. 3) from a morphological point of view, it can
be observed that the numerical crater has a semi spherical shape in
contrast with the flat-floored with central uplift shape or flat-
floored with a peak ring shape observed [7]. This fact may be
attributed to the use of a Euler processor together with a con-
tinuum model, which is not able to simulate disintegration, to
represent the soil. It is well known that soils are granular materials
with low cohesion that are pulverized when exposed to close ex-
plosions. As a result, many soil particles are thrown into the air
and then fall down, forming a crater with the shape shown in
Figs. 1 and 3.

The morphological differences found should not be interpreted
as a limitation of the numerical simulation. For this reason, only
the diameter value is used in the numerical-experimental compari-
son and in the numerical predictions (Egs. (9) and (10)).

Moreover, the wave propagation in the air and in the soil is
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Fig. 5 Crater formation (10 kg TNT on the ground). (a) t
=0.5ms. (b) t=1.1ms. (¢) t=2.0ms. (d) t=5.2ms. (e) t
=10.0 ms (AuTopYN-2D [18]). Model of 12.5X 6.0 m2.

illustrated in Figs. 7(a) and 7(b). Finally, in Fig. 7(c), the Von
Mises stresses developed in the soil are shown at 1.17 ms for the
case of 50 kg of TNT with the energy release center at the ground
level. Figure 7(a) shows that the shock wave propagates freely in
the air with a hemispherical wavefront as expected. In Figs. 7(b)
and 7(c) it may be observed that the wavefront is propagating into
the soil and the transmitting boundary applied (see Sec. 3.4) is
working properly because reflections of the waves in the boundary
are not observed, except for a small reflection that appears in the
bottom of the soil grid. This reflection has null effect on the crater
formation because most of the TNT liberated energy has been
consumed at this time.

The detonation produces a shock wave and very high initial gas
pressures. (As an example, a value of the order of 35,000 atm is
obtained for a 50 kg TNT half buried load.) This causes crushing,
compaction, and plastic deformation of the subgrade immediately
below and surrounding the detonation together with the formation
of a near semispherical cavity. The high-pressure gases generate a
shock wave across the semispherical surface and there is a sharp
discontinuity in the physical state of the subgrade. On the shock
wave front the subgrade is compressed due to the collapse of the
pores. The subgrade then breaks into particles and behind the
shock wave front the subgrade expands. As the shock wave moves
outwards from the point of detonation the peak pressure falls. For
pressures above the dynamic crushing strength of the subgrade,
work on the subgrade appears in the form of crushing, heating,
and physical displacement. In regions outside the limit of crush-
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Fig. 6 Crater formation. Final state of the crater obtained
numerically.

ing, the shock wave produces permanent deformation by plastic
flow until the peak pressure in the shock wave front has decreased
to a value equal to the plastic limit for the subgrade.

4.2 Comparison With Experimental Results. In order to
validate not only the material models and material properties but
also the analysis procedures, a comparison with experimental re-
sults was first performed. The results of a series of tests performed
with different amounts of explosive from 1 to 10 kg of TNT on
the soil surface [14] were used to calibrate the materials
parameters.

In this section, the properties of the soil incorporated in the
numerical model are obtained from real properties of the soil at
the test site (see [14] and Table 1). Then, the initial density
adopted is 1250 kg/m3. The value of the shear modulus G can be
obtained from the SPT test by using the empirical relationship

(€Y ® ©

Fig. 7 Wave propagation. (a) Velocity field in the air. (b) Pres-
sure contours in the soil. (¢) Von Mises stresses. 50 kg of TNT
with the energy release center at the ground level. 1.17 ms.
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Table 5 Apparent crater diameter. Comparison with experimental results.

Experimental w Experimental results'* Numerical results Numerical/

program (kg of TNT) D[m] D[m] Experimental
Ref. [14] 1 0.58 0.60 1.03
Explosive 2 0.74 0.72 0.97
charge 4 0.84 1.03 1.23
O 7 1.48 1.12 0.76
10 1.56 1.54 0.99
250 3.80 3.94 1.04

EMRTC Explosive

o charge

(8a) given by Ohsaki and Iwasaki [24] for sands or, alternatively,
the expression (8b) given by Hara et al. [25] for cohesive soils.

G,=12N"3 MPa (8a)

G,=158N"" MPa (8b)

For the soils found at the test site, the bounds are given by the
expression (8a): G=50 to 88 MPa. A value of 70 MPa was
adopted. Some authors disagree with using SPT results in order to
obtain elastic properties of the soil. However, in Sec. 4.4 it will be
shown that the variation of the shear modulus does not affect the
dimensions of the crater significantly.

An additional comparison with EMRTC experimental determi-
nations was made. Numerical results for the crater diameter and
the comparison with experimental ones are presented in Table 5.
Moreover, the diameters obtained in the numerical study are rep-
resented in Fig. 8 as a function of the diameters measured in the
experimental program for the same explosive weight and location.
The 45 deg trend line represents the perfect correlation. Figure 8
indicates that the research program can be considered successful.

Table 5 and Fig. 8 show that a mean difference of about 10% is
obtained with respect to experimental results for charges ranging
from 1 to 10 kg of TNT and a difference of about 4% for greater

charges. Obviously, the last value, corresponding to a 250 kg4
TNT load, should not be considered in a quantitative sense be-
cause it is only the comparison of one result. However, the quali-
tative tendency of the numerical model seems to be good for both
small and big charges.

4.3 Numerical Results. The crater dimensions for explosive
charges from 50 to 500 Kg of TNT situated on the ground (case
(a)) and with the energy release center at ground level (case (b))
are calculated in this section. These charge values were used be-
cause they are in the medium range of terrorist attacks to build-
ings. The range of explosive masses used in terrorist attacks is
discussed in some papers [26,27] and it is strongly dependent on
the way the explosive is supposed to have been transported. In
order to carry out a comparative analysis, the mass of the explo-
sive is defined by TNT masses. The corresponding masses for
other explosives can be obtained through the concept of TNT
equivalence [28].

The results obtained are presented in Table 6. These results are
obtained with the soil properties indicated in Table 4. However, a
study about the variability of soil properties is presented in
Sec. 4.4.

It may be observed that the crater is always smaller when the

35

25

D (m) Experinm
¥

15

as

15

2 25 3 35 4

D (i) Numerical

Fig. 8 Comparison of numerical and experimental crater diameters
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Table 6 Apparent crater diameter. Numerical results.

w (a) o (b) o Comparison
(kg of TNT) D (m) D (m) D(a)/D(b)
50 2.10 2.76 0.76
100 2.52 3.06 0.82
150 2.62 3.40 0.77
200 3.06 3.76 0.81
250 3.10 4.14 0.75
300 3.20 4.36 0.73
400 3.40 4.60 0.74
500 4.22 5.30 0.80

explosive is lying on the ground level than when the energy re-
lease center is at ground level. The difference is attributed to the
fact that the energy release center is elevated from the ground
level in case (a). Nevertheless, the ratio between apparent crater
diameters of both cases is almost constant, about 0.77 (coefficient
of variation 4.4%), for all the charges studied.

The results of this numerical analysis are also plotted in Fig. 9
to be compared with experimental ones and empirical
equation (4).

In a graphic representing crater diameter as a function of the
cubic root of the explosive mass, numerical results are presented
in Fig. 9 for the cases when the explosive is lying on the ground
level (case (a) in Fig. 9) and when the energy release center is at
the ground level (case (b) in Fig. 9). These results can be approxi-
mately represented with two straight lines through the origin.
These straight lines are similar to that described in Eq. (4) that
was also included in Fig. 9 together with its upper and lower
limits. Numerical results (b) for explosions with the energy re-
lease center at the ground level and EMRTC experimental result
are very close to the lower limit of Eq. (4). Another linear ap-
proximation must be used for explosives lying on the ground like
those simulated in numerical series (a).

4.4 Influence of Soil Properties. In order to analyze the in-
fluence of soil properties on the size of the craters, additional
studies were carried out varying the elastic, failure, and yield
strength properties.

4.4.1 Shear Modulus. The value of the shear modulus was
varied in a wide range: 30 MPa (soft soil) to 1000 MPa (sound
rock). The results are presented in Table 7.

Table 7 Apparent crater diameter. Influence of shear modulus.
D,.;. =diameter corresponding, G=200 MPa.

w G Numerical results
(kg of TNT) (MPa) D[m] D,/ D
30 1.564 0.96
10 (@) 200 1.500 —
1000 1.388 1.08
30 4.350 0.95
250 o 200 4.140 —
1000 3.950 1.05

4.4.2 Mass Density. In this case, a wide range was also con-
sidered for the density 1250 kg/m? to the reference (maximum)
density 1950 kg/m?>. The results are presented in Table 8.

Tables 7 and 8 show that the elastic properties of the soil do not
affect significantly the diameter of the crater. However, a variation
of £5% could be obtained in particular cases.

4.4.3 Failure Criteria. The hydro tensile limit was varied
from —100 to —200 kPa. The results are presented in Table 9.

4.4.4 Yield Strength. The three yield functions considered are
presented in Table 10. The first one corresponds to a Tresca crite-
rion and the last two to a Mohr Coulomb criterion with different
yield strength. The results for the diameter of the crater obtained
for each one of these yielding criteria are shown in Table 11.

Tables 9 and 11 show that, when the failure limit and the yield
function are changed between reasonable limits, the diameter of
the crater remains unchanged.

4.5 Summary of Results. From the results obtained in Secs.
4.1-4.4, Egs. (9) and (10) can be proposed for the prediction of
crater dimensions in cases (a) and (b), respectively. These equa-
tions represent the linear approximation of the numerical result by
minimum least-fit squares. The variation of £5% accounts for the
differences between soil properties that could be found in different
sites.

Case (a) o D (m)=0.51W (Kg)"*+5% 9)

Case (b) o

It must be noted that there are very important differences be-
tween the previous results found in the literature ([3], Eq. (2)) and

D (m)=0.65W (Kg)"®*+5% (10)

e O Experim. results

—— Eq.(2) mean

------- Eq.(2) Inf.

- - -Eq.(2) Sup.

D[m]

¢ EMRTC

A Numer. results (Case a)

— - - Linear aprox. (Eq. 9)

X Numer. resuits (Case b)

— Linear aprox. (Eq. 10)

W{Kg|1/3

Fig. 9 Apparent crater diameter for explosions on and above the ground level
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Table 8 Apparent crater diameter. Influence of density.

w
o Numerical results, D (m)
(a) Mass density (b) Mass density

(kg of TNT) 1250 kg/m? 1920 kg/m? D/ Dy
50 2.76 2.76 1.00
100 3.06 2.92 1.05
150 3.40 3.40 1.00
200 3.76 3.58 1.05
250 4.14 3.78 1.10
300 4.36 3.94 1.11
400 4.60 4.50 1.02
500 5.30 4.60 115

those presented in this paper in Egs. (9) and (10). Moreover, the
dispersion obtained is significantly smaller in this case.

5 Conclusions

A numerical study of craters produced by explosive loads was
presented in this paper. Taking into account the results obtained,
the following conclusions and observations may be drawn:

¢ Material models and analysis procedures were validated
with experimental results. A good agreement was found
with existing results for apparent diameters of this type
of crater.

e It was observed, as it was expected, that the crater is
always smaller when the explosive is lying at ground
level than when the energy release center is at ground
level. The difference is attributed to the fact that the en-
ergy release center is elevated from the ground level in
case (a). Nevertheless, the ratio between apparent crater

Table 9 Apparent crater diameter. Influence of hydro tensile
limit.

w
o Numerical results, D (m)
(a) HTL (b) HTL
(kg of TNT) —100 kPa —200 kPa D,/ D)
50 2.10 2.10 1.00
500 4.22 4.22 1.00
Table 10 Yield functions adopted
Pressure
(kPa) Yield stress (kPa)
(a) (b) (c)
0 6.20x 10° 1.00 X 10% 2.00 X 102
3.6x10* 6.20X 10° 3.80 % 10% 7.60 X 102
1.4%x10° 6.20% 103 1.14%x10° 2.28 X 10°
27%10° 6.20% 103 1.14X 103 228X 103
Table 11 Apparent crater diameter. Influence of yield function.
w
0 Numerical results, D (m)

Yield Yield Yield

(kg of TNT) function function function
(a) (b) (c)

50 2.10 2.10 2.10
500 422 422 4.22

Journal of Applied Mechanics

diameters of both cases is almost constant: about 0.77
(coefficient of variation 4.4%) for all the charges studied.

* It was demonstrated that the elastic properties of the soil
do not significantly affect the diameter of the crater ob-
tained. However, a variation of +5% could be obtained
in particular cases.

e It was demonstrated that when the failure limit and the
yield function are changed between reasonable limits,
the diameter of the crater remains unchanged.

e The crater diameters for explosive loads from 50 to
500 kg of TNT on the soil surface and with the energy
release center at the ground level were obtained. The
results obtained confirm that the simple empirical linear
laws proposed in the paper can be used to predict the
apparent crater diameter, which is a function of the cubic
root of the explosive mass. Moreover, the effect of the
elevation of the energy release center when the explosive
is on the ground is clearly shown in the numerical results
and in the proposed empirical relationship.

e The results obtained in this paper show that the proposed
empirical laws can be used for different types of soil
having mechanical properties in the range studied, with-
out introducing large errors.
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Constitutive Model for
Fiber-Reinforced Composite
Laminates

Nowadays, conventional materials have been progressively replaced by composite mate-
rials in a wide variety of applications. Particularly, fiber reinforced composite laminates
are widely used. The appropriate design of elements made of this type of material re-
quires the use of constitutive models capable of estimating their stiffness and strength. A
general constitutive model for fiber reinforced laminated composites is presented in this
paper. The model is obtained as a generalization of classical mixture theory taking into
account the relations among the strains and stresses in the components and the composite
in principal symmetry directions of the material. The constitutive equations for the lami-
nated composite result from the combination of lamina constitutive equations that also
result from the combination of fibers and matrix. It is assumed that each one of the
components are orthotropic and elastoplastic. Basic assumptions of the proposed model
and the resulting equations are first presented in the paper. The numerical algorithm
developed for the implementation in a three-dimensional (3D) finite element nonlinear
program is also described. The paper is completed with application examples and com-
parison with experimental results. The comparison shows the capacity of the proposed
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model for the simulation of stiffness and strength of different composite laminates.
[DOL: 10.1115/1.2200654]

1 Introduction

In recent years, considerable attention has been focused on the
modeling of composite materials as conventional materials are
continuously being replaced by a variety of composite materials.
Several approaches have been developed but there is still a strong
need of predicting models that can be used for stiffness and
strength assessment of this type of materials in actual situations
without the need of many empirical constants.

Constitutive models for fiber reinforced composite laminates
can be classified according to the scale in which they are defined
[1]. In macro-models the composite material is represented as a
unique material with average properties. This type of approach
generally results insufficient to describe the overall inelastic be-
havior and failure of the laminate. In meso-models the composite
is assumed to be formed by unidirectional laminas for which mac-
roscopic equations are derived. The constitutive properties of in-
dividual laminas are obtained from experimental tests. In contrast,
micro-models use the constitutive equations of the elemental con-
stituents: Matrix, fibers, interfaces, etc. This approach has the ad-
vantage of allowing the identification of the failure mode but re-
quires accurate experimental data for the individual components,
which is not generally available. An alternate approach is the use
of multi-scale models [2].

Many micromechanical models have been developed for fiber
reinforced composites but most of them have considerable limita-
tions. Theories are generally too complicated or, when they are
simple, they are only able to reproduce a few aspects of the be-
havior in fiber directions or they are only valid for composites in
which stiffness and strength of the fibers are significantly greater
than those of the matrix [3].
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Hinton and Soden recently organized a “failure exercise” to
compare the predictive capabilities of a number of the most im-
portant strength theories for laminated composites in current us-
age [4-8]. The results of that exercise [9—12] were used for the
assessment of the accuracy of current theoretical methods of fail-
ure prediction in composite laminates. According to Soden et al.
[12], the most reliable theories for the designer are the theories of
Zinoviev et al. [13,14], Bogetti [15], Tsai [16,17], Puck [18,19],
and Cuntze [20].

None of these five theories is based on a micromechanics analy-
sis. Huang [3] developed a micromechanical model to estimate the
strength of unidirectional fibre reinforced composites. Fibers and
matrix are considered to be elastoplastic with very simple linear
hardening laws defined for each direction. The stress in each com-
ponent is expressed in terms of the global stress using a bridging
matrix. Nevertheless, the accuracy of the strength predictions for
this theory is moderate [12].

A numerical model for general composite materials, appropriate
for the mechanical analysis of fiber reinforced composite lami-
nates, is presented in this paper. The model is based on an analysis
at component materials level that allows obtaining, at a first stage,
the behavior of the lamina from the mechanical properties of ma-
trix and fibers, their volume ratio and their orientation. Then, the
behavior of the laminate can be obtained composing laminas with
different fiber orientations. The model is completely general and
can be used for other types of composites.

The model is based on very simple kinematical and equilibrium
assumptions that, properly handled, lead to composite constitutive
equation and the strain and stress tensors in all the components. In
this way, elastic properties of the laminate can be obtained. Non-
linear behavior and the progressive failure can be analyzed and
failure envelopes can be defined.

The novelty of the model presented is the development of a
formalism that allows dealing with equal stress or equal strain in
correspondence with each stress (or strain) component in a sys-
tematic way and that is applicable to various kinds of composite
topologies. The model can be interpreted as a generalization of
Reuss’ and Voight’s theories that can also deal with general ortho-
tropic elastoplastic models for each one of the constituents mate-
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rials. Moreover, resulting equations are very simple and resemble
those of mixing theory [21] allowing a similar numerical treat-
ment.

2 Proposed Model

2.1 Introduction. This model assumes that the composite can
be subsequently decomposed in sub-composites to arrive to com-
posites with simple structure for which simple kinematical and
equilibrium hypothesis relating stress and strain of the compo-
nents can be stated. Basically, for this composite with simple
structure it should be clear which strain components are common
to all components (parallel behavior) and which stress compo-
nents are common to all components (series behavior).

Successive decompositions are generally required in order to
state these assumptions. Particularly, in the case of reinforced fiber
laminated composites, the laminate should be separated in laminas
and each lamina should be analyzed first. It will be noted later in
application examples that even the precise analysis of one indi-
vidual unidirectional lamina should require more than one decom-
position.

2.2 Constitutive Model for the Components. It is well
known that fibers present a strong anisotropic behavior, generally
assumed as transversely isotropic, characterized not only by the
elastic orthotropy like in the case of carbon fibers but also by the
marked difference of strength in principal directions. Another im-
portant property of fibers is their slightly lower strength in com-
pression than in tension.

In general, epoxy resins have lower tension than compression
strength like brittle materials. In the case of polymeric matrix the
material itself can be supposed to be isotropic. Nevertheless, as
the fiber/matrix interface is not explicitly modeled, the constitu-
tive model of the matrix is modified including the interface con-
stitutive model [22,23]. Orthotropic elastoplastic or damage inter-
face models can be used to simulate fiber debonding or
delamination. As a result, the constitutive model of the matrix
including interface exhibits a tension strength much lower in per-
pendicular direction to fiber than in longitudinal direction.

Taking into account the above considerations, each one of the
basic components is supposed to have a general orthotropic elas-
toplastic behavior covering the case of fibers, matrix, and inter-
face included in matrix.

The orthotropic model used is based on the assumption that
there are two spaces [24-26]: (a) A real anisotropic space and (b)
a fictitious isotropic space. The problem is solved in the fictitious
isotropic space allowing the use of elastoplastic models originally
developed for isotropic materials. The isotropic elastoplastic
model used in this paper includes energy-based criteria to make it
suitable for brittle materials [27].

Stress tensors in both spaces are related by a tensor transforma-
tion that can be written as,

7=A(0,K):0 (1)

where 7 and o are the stress tensors in spaces (a) and (b), respec-
tively, and A is a fourth-order transformation tensor that contains
the information about strength anisotropy depending on material
symmetry. In the most general case, this tensor varies with the
stress state and the evolution of the inelastic process represented
by the isotropic plastic hardening variable «” [26]. In this paper,
all the components materials are assumed initially orthotropic
with 3 axes of material symmetry. There are different alternatives
to define tensor A for this case [25,26,28-30]. The simplest way is
a diagonal fourth-order tensor [27],

Aijkl = 5im 5jn5km§ln?/&mn (2)

where 7 is the strength in the fictitious isotropic space and &,,), is
the actual strength in the direction m in the plane with normal n. A
better approach has been proposed by Oller et al. [30].

The model is thermodynamically consistent and it is based on
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Fig. 1
Simple structure, (b) more complex structure.

Schematic representation of composite structure. (a)

the assumption of uncoupled elasticity. The free energy density
can be supposed to be formed by two independent parts: An elas-
tic part ¢ and a plastic part W7,

V=P PP Pe=leCig 3)

where C is the stiffness tensor and €€ is the elastic strain tensor.
The secant constitutive equation can be deduced from the free
energy density as follows,

o=0V°0e°=C:e°=C:(g - €") (4)

where € is the strain tensor and €’ is the plastic strain tensor.
The plastic threshold is defined through a yielding function,

Flo;a)=F(m;@) =0 (5)

where F and F represent the yielding function in the real aniso-
tropic space and in the fictitious isotropic space, respectively; a
and « are internal variables in correspondence with both spaces.

The transformation defined by Eq. (1) allows the use of yield-

ing functions F defined for isotropic materials in the fictitious
isotropic space. It should be noted that this space is isotropic with
respect to yielding thresholds and strength but not necessarily
with respect to other properties like elastic stiffness.

Evolution of plastic strain in real space is defined with the
well-known flow rule,

& = \N(0G/ia) (6)

where G is the plastic potential function defined in the real stress
space. Instead of working with this function that should be aniso-

tropic, function G defined in the fictitious isotropic space could be
used.

G(o,a) = G(r,a) (7)

Equation (5) can be then rewritten as,

£ = N(9G1da) = N(9G197):(971d0) = N(3G/d7):H = Nh

with H=d7/d0 and h=(3G/o7):H (8)

where H is a fourth-rank tensor and £ is a second-rank tensor and
represents the plastic flux in the real orthotropic space.

2.3 Kinematical and Equilibrium Assumptions. In a com-
posite with a simple structure there are three orthogonal directions
referred to which some strain components are common to all con-
stituents (parallel behavior) and the rest of the components are
associated to equal stress in all constituents (series behavior). A
parallel behavior in correspondence with one component means
that all the composite constituents have the same value for this
strain component. A series behavior in correspondence with one
component means that all the composite constituents have the
same value for this stress component. As an example, consider a
composite with the representative structure shown in Fig. 1(a). It
is clear that o is common for both components (series behavior)
while &, and &35 are common for both components (series behav-
ior). For a more complex structure like that represented in Fig.
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1(b), this type of conclusions can not be stated a priori, but the
composite can be considered to be formed by the sub-composites
with simple structure indicated with dashed lines.

Based on this analysis, stress and strain components could be
rearranged. All the stress and strain components that are common
to all components are grouped in tensor £”, while all the stress and
strain components that will be obtained as a superposition of the
contribution of all constituents are grouped in tensor o

In order to express this rearrangement the following fourth or-
der tensors are defined,

a;;kl = 5ir5js 5kr51sH(prs)

e _ o
Qi1 = 5ik5jl = ikl

o 1 if the rs component works in parallel
wit =1 . . .
Prs 0 if the rs component works in series

©)
H: Threshold function.

According to Eq. (9), the product @”: o preserves the stress
components that are assumed to have a parallel behavior and
make the other components zero.

Stress and strain components are rearranged as follows,
o=a’.0" +a’¢"

"
o =a”0+a’¢

and (10)

* * *
£ =a’.0+a’¢ e=a’.0 +a’¢e

where ¢ contains stress components in correspondence with di-
rections of parallel behavior and strain components in correspon-
dence with directions of series behavior. Tensor £* contains strain
components in correspondence with directions of parallel behav-
ior and stress components in correspondence with directions of
series behavior

2.4 Alternative Way of Writing Constitutive Equations of
the Components. An alternative way of writing constitutive
equations of the components that makes the development of the
constitutive equation of the composite easier is proposed in this
section.

Combining Egs. (3) and (10), the following secant constitutive
relation can be obtained,

o =Ce - o (11)

where,
C'=(a”C+ a®):(a”:C+ a°)! (12)
o =(C":a" - a®):€” (13)

2.5 Composite Constitutive Equation. First, the case of a
composite with simple structure where principal directions and
tensors @’ and a® are coincident for all the constituents is ana-
lyzed. In such composite, the following condition is verified,

(14)

g.=¢

where ¢ indicates an arbitrary component material.

Assuming that the plastic strain of the composite in the direc-
tions in which the material works in series can be obtained as the
sum of the plastics strains of the components multiplied by their
respective volume fractions, the following secant equation is ob-
tained,

o =Ce -0 (15)

where,
C=2kC o =>k(C:a"-a) (16)

And k. represents the volume fraction of a generic constituent
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material.
Equation (15) can be rearranged with the aid of Egs. (10) to
give,

o=C:e-0" (17)
where,
C=(a%C +a®):(a’:C" + a”)"!
(rpz—C:aS:a"’*+a":o-”*z(a"—C:aﬁ):o"’* (18)

Numerical implementation in a finite element program requires
the evaluation of the strain tensor for each one of the components
from the composite strains. In this way, once the strains are
known, constitutive equations can be independently integrated for
each constituent and information at the constituents material level
(fiber and matrix) level can be recorded through the corresponding
internal variables.

Starting from condition (14) and Egs. (10) and (17), the follow-
ing relation can be written,

e.=¢ e+ & (19)
where,
.= (afE:C: +a%):(a®:C" + a”)!
&=¢. a0 - a0 (20)

The elastoplastic tangent tensor can be obtained from the deri-
vation of Eq. (16)

0=C:é-0"=Cl:¢ (21)

and results,
CT=C-(a"-C:af): 2, k(Cr:a” - a):(I - C;":CT): b,
(22)

where CCT is the elastoplastic tangent tensor of component c.

All the preceding equations are only valid in the composite
local system of reference coincident with its principal symmetry
directions. For an arbitrary reference system, all tensors must be
rotated.

2.6 More Complex Composites. The constitutive equations
for a laminated composite or for a composite material with a more
complex structure, where the tensors @’ and a® are not the same
for all components, can be obtained in different steps. The com-
posite must be decomposed in more simple sub-composites for
which the correspondent constitutive equations can be obtained as
described above. Then, the constitutive equation of the composite,
can be written with a similar approach, composing the constitutive
equations already found for the sub-components. For example, the
constitutive equation of a laminate composed by » fiber reinforced
laminas with different properties, in principal directions of the
laminate would look like Egs. (17) and (18) where the tensors a”
and o are related to the laminate structure and the tensors C* and
o" are calculated as follows,

C'=2kC; (23)
c=1

C.=(a"R,.R..C..R..R +a°):(a”R..R,..C..R" R

c

+a”)™! (24)
2 2 -1
C.=|a% D k.C+a’ :(a;f:E kCoi+ o (25)
i=1 i=1
C:,: (al:C.;+ a):(af:C i + a‘;)’l (26)
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Fig. 2 Numerical scheme for the solution of a nonlinear problem

n

o = > k(Cra” - af):R™" . € . R

c=1

(27)

e =Clo=C" (a7~ Caf):0 (28)

2
o) =2 ki(Clzal - ab):el,

i=1

(29)

where R, is the rotation matrix from lamina ¢ principal coordi-
nates to laminate principal coordinates, the tensors @’ and « are
related to the lamina c, k. is the volume fraction of lamina c, k,; is
the volume fraction of the component i in lamina ¢, C; is the
secant stiffness tensor of the same component in lamina local
coordinates, and €, is the permanent strains tensor of component
i in lamina c in local lamina coordinates.

Delamination can be included in the model presented using an

904 / Vol. 73, NOVEMBER 2006

approach similar to that used for fiber debonding [22,23]. A term
due to differential strains among laminas, depending on interlami-
nar stress, should be added in Eq. (27).

3 Numerical Implementation

The model presented can be implemented in a nonlinear finite
element program using the iterative scheme presented in Fig. 2. A
composite with simple structure strains in each component can be
evaluated with Eq. (19) if plastic strains are known. In case of a
more complex composite, this scheme must be used to decompose
the composite in sub-composites and again inside each sub-
composite to arrive to each one of the constituents.

In any case, plastic strains of all components are required for
the evaluation of the strains in each component. As a result, the
problem cannot be explicitly solved and, for example, an iterative
scheme must be used. The algorithm schematized in Fig. 2 is
based on a predictor-corrector iterative procedure using the norm
of plastic strains as convergence measure.
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Fig. 3 Fiber reinforced laminated composite

Once the strains of each one of the constituents have been ob-
tained, the correspondent constitutive equations can be integrated
using well-known procedures like Euler backward or return map-
ping algorithms.

Failure envelopes can be obtained with a finite element pro-
gram loading an element with different stress combinations up to
failure. Each stress ratio gives a point of the failure envelope.
Alternatively, failure envelopes for composites with simple struc-
ture can be analytically obtained writing the yielding criteria of
each component, Eq. (5), in terms of the composite stress tensor.
In this type of composites it is simple to analyze which is the
failure mechanism without any nonlinear calculation.

4 Application Examples

4.1 Introduction. A scheme of a laminated is shown in Fig. 3
where the principal directions used as references are also indi-

cated. In the case of unidirectional laminas, the components can
be supposed to work in parallel in fiber directions 1 and 3 (the
same strain for all components) and in series in direction 2 (the
same stress for all components). The way in which shear is re-
sisted is not so clear and depends, among other factors, on the
shape of the fibers transverse section. In general, a more complex
combination is required to accurately reproduce shear transfer in-
side the composite.

In the case of the laminate, principal directions X and Y are
contained in the laminate plane and direction Z is orthogonal to
that plane. Each lamina can exhibit a different fiber orientation
that is defined through the angle @ that forms lamina principal
direction 1 with principal direction X of the laminate (see Fig. 4).
It can be assumed that laminas work in parallel in the laminate
plane and in series in the orthogonal direction.

In general, structures are not designed with all the fibers aligned
in a unique direction if the structure is expected to be exposed to
stresses in the orthogonal direction. However, unidirectional lami-
nas constitute the basic elements of the laminate and, inside it,
they can be exposed to stresses normal to the fiber direction and
shear stresses. It is important then to know first if the models are
able to reproduce the behavior of individual laminas.

4.2 Elastic Properties of an Unidirectional Lamina. Elastic
properties of an epoxy lamina with carbon fibers are studied in
this section. Elastic properties of each one of the constituents are
the following,
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Fig. 4 Elastic properties of the lamina as a function of fiber fraction. (a) E;, (b) E,, (¢)
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E|f= 232 GPa, E2f= 15 GPa; V|2f= 0279,

V23f= 049; G12f= 30.2 GPa,

E,=535GPa; v,=022

The variations of longitudinal and transverse Young modulus
E, and E,, longitudinal and transverse shear modulus G, and Go3
and Poisson ratio v,3 as a function of fiber volume fraction k; are
shown in Fig. 4. The experimental results obtained by Kriz and
Stinchcomb [31] and analytical results by Huang [3] are also plot-
ted on Fig. 4. In all cases, a good agreement between the proposed
model and experimental results is obtained. It should be noted that
in this case where fibers are supposed to be orthotropic, elastic
modulus E, can be accurately estimated with the assumption of
series behavior in direction 2. In contrast, for transverse elastic
modulus G, and G,3 a series/parallel combination gives better
results.

4.3 Strength and Nonlinear Behavior of an Unidirectional
Lamina. The nonlinear behavior of a lamina composed of unidi-
rectional SiC brittle fibers and a Titanium matrix is analyzed in
this section. The mechanical properties of the constituent materi-
als are the following,

E;=400 GPa; v,;=0.25; Y}=1000 MPa;
E, =106 GPa; E!=7.6 GPa, Y, =850 MPa;
Y“ =1000 MPa; v,,=0.33

where Y} and Y, are the matrix yield stress and ultimate
strength, respectively, and Y% is the fibers ultimate strength.

The stress-strain behavior in the direction of the fibers for two
different fiber volume fractions is presented in Fig. 5. Numerical
results are compared with experimental ones obtained by Gundel
[32] and analytical ones given by Huang [3]. A good agreement
with analytical and experimental results is obtained.

4.4 Composite Laminates. Material data and the different
types of analysis presented in this section correspond to the failure
exercise previously mentioned [5,7]. All the laminates studied are
formed by laminas composed of a soft matrix with continuous
unidirectional fibers. The mechanical properties of four types of
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Table 1 Matrix mechanical properties [5]
LY556/HT9 MY750/HY917

3501-6 BSL914C 07/DY063 /DY063

Type of Matrix €poXy  epoxy epoxy epoxy

Young modulus, 4.2 4.0 3.35 3.35

E, (GPa)

Shear modulus, 1.567 1.481 1.24 1.24

G,, (GPa)

Poisson ratio, 0.34 0.35 0.35 0.35

Vm

Tension strength, 69 75 80 80

Y, (MPa)

Compres. strength, 250 150 120 120

Y, (MPa)

Shear strength, 50 70

S,, (MPa)

Ultimate tension strain., 1.7 4 5 5

& (%)

epoxy resins and four types of glass and carbon fibers are pre-
sented in Tables 1 and 2, respectively. The determination of the
mechanical properties is not always straightforward. As a conse-
quence, variability and inaccuracy are expected to be found.
Almost all experimental results used were derived from tests on
tube specimens. Numerical results were all obtained for a
100 mm X 100 mm model with the lamina or laminate thickness
and a three-dimensional analysis was performed. The use of these
models is justified by the fact that in tube specimens a global
plane stress state for the lamina or the laminate is obtained.

4.4.1 Unidirectional Laminas. Before analyzing the behavior
of the laminate it is interesting to analyze the behavior of unidi-
rectional laminas under biaxial tension tests to obtain the corre-
sponding failure envelopes. In all cases, a Mohr Coulomb failure
criterion was used for the matrix while a Drucker Prager criterion
was used for the fibers failure.

Figure 6 shows the comparison of the failure envelope obtained
using the proposed model with experimental results [7] and with
other numerical models [12] for an unidirectional glass fiber rein-
forced lamina (E-Glass/LY556/HT907/DY063), with a fiber vol-
ume fraction kf=0.62, under shear stresses and normal stresses
orthogonal to fiber direction. Experimental results correspond to
tubes of 60 mm internal diameter and 2 mm thick. It can be ob-
served that the model closely reproduces the experimental failure
envelope. For this particular example, the failure is always pro-
duced by the matrix failure.

Figure 7 shows the comparison of failures stresses obtained
using the model proposed and other numerical models [11] with
experimental ones [7] for an unidirectional carbon fiber reinforced
lamina (T300/BSL914C epoxy), with a fiber volume fraction &
=0.60, under shear stresses and normal stresses in the direction of

Table 2 Fibers mechanical properties [5]

E-Glass  Silenka
21X43  E-Glass
Type of fiber AS4  T300 Gevetex 1200 tex
225 230 80 74

Long. Young modulus, E;; (GPa)
Transv. Young modulus, Ej, (GPa) 15 15 80 74

Long. shear. modulus, G, (GPa) 15 15 33.33 30.8
Poisson ratio vy, 0.2 0.2 0.2 0.2
Transv. shear modulus., Gp»; (GPa) 7 7 33.33 30.8
Long. tensile strength, X/, (MPa) 3350 2500 2150 2150
Long. compres. strength, X;, (MPa) 2500 2000 1450 1450
Ultimate tensile strain, &7 (%) 1.488 1.086  2.687 2.905
1.111 0.869 1.813 1.959

Ultimate compres. strain, £, (%)
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Fig. 6 Failure envelope for a unidirectional lamina (E-Glass/LY556/HT907/DY063)

the fibers. Experimental results were obtained from tubes tested
under combined axial tension or compression and torsion. The
tubes were 32 mm diameter and 1.9-2.3 mm thick. In this ex-
ample, failure is generated by the failure of the fibers for moder-
ated shear stresses or by the matrix failure for greater shear
stresses. It could be seen that the model approximately reproduces
the lamina failure envelope but does not result conservative in the
zone corresponding to compression in fiber direction because it is
not able to capture buckling and associated failure.

Figure 8 shows the comparison of the failure envelope obtained
using the model and other numerical models [12] with experimen-
tal results [7] for an unidirectional glass fiber reinforced lamina
(Silenka E-Glass 1200 tex MY750/HY917/DY063 epoxy),l with a
fiber volume fraction k;=0.60 under normal stresses in the direc-
tion of the fibers and in the orthogonal one. Most of the experi-
mental results were obtained from testing nearly circumferentially
wound tubes under combined internal pressure and axial load. The
specimens were 100 mm inner diameter, 300 mm long and ap-
proximately 0.95 mm or 1.2 mm thick. In this case, the failure is
produced by the fibers failure when the stress in fiber direction is
prevalent or by the matrix failure in the directional perpendicular
to the fibers.

4.4.2 Laminates

4.4.2.1 (90 deg/+30 deg), laminate (E-Glass/LY556/HT907
/DY063). The structure of this laminate is indicated in Fig. 9.
Soden et al. [5] use a different nomenclature but refer to a
(90/£30 deg), laminate. The angle indicated corresponds to the
angle of the fibers to axe X that is coincident with the axe of the
tubes experimentally tested. The total thickness of the laminate is
2 mm, while £;=0.172 mm and /,=0.414 mm. As a conse-
quence, laminas at +£30 deg represent 82.8% of the total thickness
and laminas at 90 deg represent the remaining 17.2%. The lami-
nate is not isotropic and, therefore, different types of failure under
biaxial stresses can take place, not only those due to fibers failure.
The fiber volume fraction of each lamina is k;=0.62. Experimen-
tal results were obtained from 60 mm inside diameter and 2 mm
thick tubes tested under combined pressure and axial load and
combined torsion and axial load.

Figures 9(a) and 9(b) show the failure envelopes obtained with
the model for this laminate under biaxial stresses and their com-
parison with experimental results [7] and other theories [11]. Fig-
ure 9(a) corresponds to different combinations of normal stresses
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Fig. 7 Failure envelope for a unidirectional lamina (T300/BSL914C epoxy)
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in the plane. Failure is due to matrix failure in the compression-  pure shear and tension zones. In general, the model reproduces
compression zone and it is caused by fiber failure for most of the  experimental results but leads to nonconservative results under
other stress combinations. Figure 9(b) represents a combination of  piaxial compression stress states.

normal and shear stresses. Composite failure is due to matrix fail-

ure in compression zone and it is mostly due to fiber failure in 4.4.2.2 (90 deg/+45 deg/0 deg), laminate AS4/3501-6. The
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Fig. 9 Failure envelope for a (90 deg/+30 deg), laminate (E-Glass/LY556/HT907/DY063).
(a) o, versus oy; (b) 74, versus o,.
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structure of this quasi isotropic laminate is shown in Fig. 10. The
total thickness of the laminate is 1.1 mm and all the laminas have
the same thickness. The fiber volume fraction of each lamina is
ky=0.60. The tests were carried out by subjecting 96 mm inside
diameter tubular specimens to pressure and axial loads.

Figure 10 shows the failure envelope obtained with the model
and its comparison with experimental results [7] and other theo-
ries [12] for biaxial stress states. In general, the tests have shown
failure by fibers fracture being the failure controlled by fibers
strength. Experimental results in the compression-compression
quadrant represent structural failure produced by buckling of the
laminate and not by crushing of the material. Numerical results
confirm that composite failure is due to fiber failure and depen-
dent on fibers compressive and tensile strength. In general, the
model results are close to experimental ones except those in the
compression-compression zone where the model is not able to
reproduce buckling failure.

4.4.2.3 (55 deg), laminate (Silenka E-Glass 1200 tex
MY750/HY917/DY063 epoxy). The structure of this laminate is
shown in Fig. 11. The total thickness of the laminate is 1 mm and

500

all the laminas have the same thickness. The fiber volume fraction
of each lamina is k;=0.60. Experimental results were obtained
from tubes with 100 mm inner diameter and 1 mm thick.

Figure 11 also shows the failure envelope obtained with the
model and its comparison with experimental results [7] and other
theories [12]. Numerical results show that failure is mostly due to
fiber failure, except for the zone where the failure envelope nar-
rows that corresponds to matrix tensile failure. A good agreement
between numerical and experimental results is achieved.

5 Conclusions

A general model for composite materials that starts from a
simple idealization of the behavior at individual constituents level
has been presented in this paper. The model gives the behavior of
a composite material from the constitutive models of the compo-
nents, their location in the composite and volume fraction. Due to
its assumptions the model is especially appropriate for the treat-
ment of fiber reinforced composite laminates. It allows the aniso-
tropy and nonlinear behavior of the materials to be considered.
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HY917/DY063 epoxy)
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The resulting model describes the behavior and the failure of
the composite taking into account what is happening in each com-
ponent and it is able to identify the failure mode of the composite
produced by the failure of one or more components. It is capable
of reproducing complex failure modes that change from the ma-
trix to the fibers depending on the type of stress state.

In contrast to most existing models for laminated composites,
the model presented is of relatively simple numerical implemen-
tation in a nonlinear finite element program and it is able to re-
produce nonlinear behavior of laminates. The model approxi-
mately reproduces the stiffness of the laminas and the failure of
unidirectional laminas and composite laminates. The differences
with experimental results are not greater than those obtained with
the best-ranked models at the failure exercise [9-12].
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Numerical Aspects on the
Prediction of Stability Boundaries
of Two-Phase Natural Circulation
Circuits, Considering Flashing
Evaluation

In this work, the stability of a two-phase, natural circulation circuit is analyzed, using a
specially developed model. This thermohydraulic model results in a set of coupled, non-
linear, first-order partial differential equations, which are solved by means of the up-wind
finite difference method, using combinations of explicit and implicit methods for the
numerical integration of the different balance equations. An adaptive nodalization
scheme is implemented, minimizing the error of the propagation of small perturbations
through the discretized volumes and especially the ones having two-phase flow regime. A
linearization method is implemented by means of numerical perturbations. Frequency
domain calculations are carried out, allowing a rapid visualization of the stability of the
linearized system. Two cases are analyzed: a test case, where the code is compared in a
wide range of qualities with an analytical model, and an application case, where the
model is used to analyze the stability of an integral reactor cooled by natural circulation.
The CAREM prototype is taken as a reference. In both cases, the numerical diffusion and
integration errors are analyzed in the stability limit prediction by means of a convergence
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analysis using different nodalization and numerical integration criteria.
[DOLI: 10.1115/1.2178835]

1 Introduction

It is well known that boiling systems may oscillate because of
two-phase dynamics and may be unstable under particular condi-
tions. This problem has been widely studied under classical boil-
ing water reactors (BWR) conditions [1,2].

In many cases, analytical solutions have been used by means of
Laplace transforming the simplified and linearized equations [3].
This allows stability analysis in the frequency domain and deter-
mining the margin to instability. Most of the stability maps for the
most common BWR reactors were constructed with these tools.
Nevertheless, they were not able to predict unstable behaviors
and, due to the complexity of the mathematical formulations, they
were often limited to very simplified cases.

Detailed-system codes were developed to study mainly acci-
dents or operational transients involving well-defined transitions.
Numerical methods were validated under these conditions. In
most cases, high artificial diffusion is introduced in the numerical
solution [4], usually looking for robustness. However, stability
events are initiated by very small perturbations, which are usually
damped as a result of numerical diffusion.

Numeric considerations of time-domain codes were enhanced
in order to reduce the impact of numerical diffusion and to enable
the study of the nonlinear behavior [5]. In some cases, simplified
phenomenological models were developed, in order to understand
the basic phenomena involved in the nonlinearities [6,7]. Some
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detailed-system codes were also improved in order to cope with
stability considerations [8], which in some cases showed good
agreement with experiments [9].

In the last decade, interest was focused on boiling natural cir-
culation systems. A number of studies were carried out, motivated
by the intention of developing an advanced BWR without recir-
culation pumps [10,11]. A different kind of instability was studied
more deeply, promoted by the combination of natural circulation
and a low void-fraction regime. This kind of instability was
pointed out in experimental observations [12] and was reported
for the Dodewaard natural circulation BWR [13]. Some theoreti-
cal analyses were carried out regarding these instabilities [ 14], and
a set of planned experimental studies has recently been announced
[15] and is meant to serve as a future validation database.

In an integral self-pressurized reactor, the control of pressure is
achieved by thermal imbalance within the primary loop. There-
fore, in order to control pressure, the water of the primary circuit
must be coupled thermodynamically with the steam located in the
dome. This implies a heat sink within the steam zone to promote
a continuous condensation [16]. This configuration achieves an
excellent self-regulation. Nevertheless, since the system is very
close to saturation pressure, it works with a continuous steam flow
from the riser, in order to compensate for the condensation in the
dome. This condition, together with the natural circulation, could
make the reactor subject to instabilities. Moroever, the long riser
provokes an important pressure change due to the hydraulic
height. This allows the possibility of the occurrence of boiling in
this region due to the decrease of saturation enthalpy, an effect
known as flashing. This was pointed out as an important factor
within these conditions [17,18].

In this work, the HUARPE numerical code is used, a purpose-
designed code that was originally developed to model the reactor
dynamics during thermal imbalance transients. It was compared
against other codes (RETRAN and RELAP) and experimental
data from the full height, full pressure natural circulation circuit
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(CAPCN) which simulates the CAREM primary system [19-21],
showing good agreement in all cases. The code is computationally
efficient and has been used for parametric analyses for design
purposes [22]. Moreover, the use of our own code allows us to
introduce modifications in order to analyze the different physical
and numerical models. This encouraged us to improve it to per-
form stability analyses, with a special emphasis on minimizing the
numerical diffusion and integration errors, and the implementation
of a linearization method. Linear and nonlinear aspects were re-
cently studied for the CAREM prototype reactor [23,24]. In these
works, interest was focused on studying the impact of different
physical models in the stability prediction, involving varying de-
grees of detail: the basic ones, which are typical in simplified
models used to obtain analytical solutions and to understand the
nature of oscillations, and also the study of the impact of specific
phenomenology, such as self-pressurization and the flashing
effect.

The purpose of this work is to focus on the numerical model
and its ability for stability prediction. Two main aspects are con-
cerned: the use of different options for numerical integration (i.e.,
explicit or implicit methods, or their combination) and the nodal-
izations employed in the predictions. The second one has been
recognized as an important factor in conventional codes. We have
also studied the use of an adaptive nodalization scheme, proposed
in HUARPE code, designed to optimize the nodalization in order
to minimize the damping of small perturbations.

2 CAREM Reactor Description

The CAREM reactor prototype (CAREM-25, 100 MWth)
[25-28] is taken as a reference. A diagram of the primary system
of this reactor is shown in Fig. 1(a). The main design features
consist of an integral primary cooling system, primary cooling by
natural circulation, self-pressurization, and safety systems relying
on passive features.

The steam dome is located inside the upper zone of the pressure
vessel. The coolant (water), confined all along the RPV by a bar-
rel, leaves the reactor core and enters the riser. It then proceeds
towards the outer annular volume through the barrel windows,
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Carem-25 primary system: (a) diagram and (b) used nodalization scheme

finally entering the steam generators (SGs). The circuit is com-
pleted by the down-comer and the lower plenum.

The control-rod-drive (CRD) mechanisms are hydraulically op-
erated and are located within the RPV. This design therefore
avoids the use of mechanical shafts passing through the RPV wall,
which in turns eliminates the possibility of a control-rod ejection
and a large LOCA.

Due to self-pressurization, the system keeps the pressure very
close to saturation value. The continuous condensation promoted
by the flow controlling the CRD and, to a lesser extent, by the
RPV structures, ensures the thermodynamical coupling of the
steam zone with the primary circuit. The negative reactivity feed-
back coefficients and the large water inventory of the primary
circuit, combined with the self-pressurization features, support an
excellent response under operational transients. Nevertheless, sta-
bility phenomena should be studied to guarantee this behavior.

3 Theoretical Model

The model developed includes the coolant circuit and steam
dome, according to the balance equations (mass, energy, and mo-
mentum) and the core behavior, taking into account the neutronic
feedback. A complete description of the theoretical model can be
found in [23]. The main hypotheses of the model are as follows:

e One-dimensional flux.

e Two-phase drift-flux equilibrium model for the circuit (a
homogeneous equilibrium model is also available).

e Two-phase, nonequilibrium, stratified model for the dome.

¢ Time-dependent pressure with a hydraulic-height correction
for the calculation of fluid saturation properties.

e No carry-under of bubbles to the SG.

* Point-kinetic ordinary equations for the core neutronics.

* One-dimensional model for the core structure, axially
nodalized.

4 Basic Equations

This section introduces the equations especially relevant for the
stability analysis. The four-equation drift-flux model is used in the
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Fig. 2 Natural circulation loop used in the test case

program [29], where a relative velocity between phases is pre-
dicted in terms of two flow-regime-dependent parameters, the
drift velocity and the distribution parameter.

In order to obtain the mass flow due to the buoyancy force
(natural circulation), the momentum and mass equations have
been solved, the spatial distribution of flow being obtained with
the mass equation:

p

1 dGA
i
ot A Jdz

=0 (1)

where p is the density, G is the mass flow, A is the flow area, and
z is the spatial coordinate.

The momentum equation is solved by integrating analytically
over the whole loop; thus:

4.0

dG ®%|G|G
— == épgcos 0dz - %Ludz—z

dt 2D,p;
2503
2p A,

=

2

where g is the gravity, D, is the hydraulic diameter, € is the
vertical angle, f is the Moody friction factor, K is the local fric-
tion, subscripts i and o are input and output, respectively, and @%0

is the two-phase friction loss multiplier. G is the total momentum
of the system, expressed as:

G= 3€Gdz

To obtain the enthalpies of the circuit, the energy equation is
solved:

3)

oh 13d(GhA) haGA) q' P
p T - =+ 4)
dgt A oz A 0z A ot

where P is the pressure, ¢’ is the linear heat flux, and / and h are
enthalpies averaged with mass and flow, respectively.

4.1 Fuel Dynamics. Fuel structure is modeled as one-
dimensional, nodalized in the axial direction. The time derivative
for the fuel temperature is proportional to the difference between
the power generated and that transferred to the fluid. An axial
temperature distribution is assumed, neglecting axial conduction.
Thus:

MCp dT(2) _ W) Q.

L. dt L.~ h'Per[T.(z) - T(2)]

(5)

T is temperature, M is the mass, Cp is the specific heat, Per is the
heated perimeter, Q is generation power, L is the length, and the
subscript ¢ stands for “core.” W is the power-axial-profile weight-
ing factor.
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Fig. 3 (a) Level diagram obtained with the numerical model, and the stability limit obtained with the analytical model. (b)

Frequencies of oscillations, according to the numerical model.
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5 Numerical Solution

A diagram of the reactor nodalization is shown in Fig. 1(b). The
dome is divided into two variable volumes to represent the steam
and the mixture zones. The equations are discretized according to
the explicit, up-wind scheme. A special effort was made to mini-
mize the numerical diffusion in the mixture drift-flux energy
equation.

5.1 Numerical Integration Scheme. The stated equations
form a set of nonlinear, first-order partial differential equations,
which are strongly coupled because the flow profile in a certain
time depends on the time derivative of the density in the same
time. This depends on the time derivatives of enthalpies, which in
turns depends on the flow profile. The variables need to be made
to converge by an internal iteration, in order to achieve a well-
converged solution. This procedure minimizes the instabilities
caused by numerical factors involving convergence problems,
which could mask the stability analysis.

5.2 Adaptive Nodalization. The concept of adaptive node
boundaries is frequently used, for example, to improve the repre-
sentation of A movements [30] or to achieve an appropriate rep-
resentation of enthalpy fronts [31]. In our case, an adaptive nodal-
ization scheme is adopted in order to achieve a nondiffusive
propagation through the system when small perturbations are con-
cerned, keeping the nodalization fixed in time.

An interesting aspect of the combination of up-wind discretiza-
tion and explicit integration is that the numerical error or numeri-
cal diffusion is minimized when the time step equals exactly the
fluid residence time in a volume. This condition coincides the
Courant numerical stability limit [32]; in this condition, a small
perturbation would be appropriately propagated through the
volume.

In order to achieve a nondiffusive propagation through the sys-
tem, the adaptive nodalization scheme allows us to reach the Cou-
rant limit in all nodes, with special attention to the core and riser
zones; these components are allowed to have a two-phase regime
and are therefore potentially a cause of instability.

In the program, a first nodalization is used in the initialization
subroutine in order to set all variables at a steady-state condition.
In particular, the fluid velocity profile is calculated and the node
length at any position can be set up in order to establish the same
fluid residence time in all the discretized volumes.

This scheme is applied to the riser, where the time step is de-
fined as the time of residence/number of nodes ratio. The same

914 / Vol. 73, NOVEMBER 2006

algorithm is applied to the core, save the first volume in the inlet;
this operates as a “regulating node” in order to allow all the above
nodes to match the same Courant limit, without violating the ge-
ometry condition due to different fluid-residence time for core and
riser. In the rest of the circuit, the nodalization is automatically
made with the maximum number of nodes for a component which
assures a maximum Courant ratio, without violating the numerical
stability limit.

When nodalization refining in a component is needed, it is pos-
sible to introduce intermediate time steps in the energy equation
(NIT) for solving the enthalpies of that single component, while
keeping constant the remaining variables over the time step. This
is used in the core, where a large number of nodes are needed to
reproduce a nonuniform axial power. This avoids penalization in
nodalization in the rest of the circuit.

The adaptive nodalization strategy is made just after the initial-
ization stage in the calculations and will reduce the damping of
small perturbation movements, especially in the whole two-phase
region.

5.3 Linearization Method. To perform a stability analysis in
the frequency domain, the system is linearized around a steady-
state condition. This is carried out by means of the small-
perturbations method, of which some details are explained in
[23,33]. This representation allows a rapid visualization of the
stability of the linearized system in a very simple manner, avoid-
ing an exhaustive analysis of all possible transients in a time-
domain approach. The discretized equations governing a given
stability problem and their boundary conditions can be written in
a compact form as:

doy
o F(yo.p, A1) " (6)

where y represents the vectors of independent variables or state
variables, p is a vector of physical and numerical parameters, and
6 denotes a deviation from the steady-state condition. F embeds
the continuous-time system predicted by the discrete-time numeri-
cal method, and its eigenvalues are relevant for the stability analy-
sis: the imaginary component is the frequency of an oscillation
mode, and the real part is the amplification or damping of that
oscillation mode. It is therefore possible to evaluate the amplifi-
cation and frequency of the longer surviving mode of oscillation,
a and w, which correspond to the real and imaginary parts, respec-
tively, of the matrix F eigenvalue having the largest real part. The
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amplification factor a is used in this work to define stability: posi-
tive or negative values imply unstable or stable conditions, respec-
tively. In particular, the asymptotic oscillation period and the de-
cay ratio are given by
2w
T,

osc —

DR = eZ‘n'a/w

™)

6 Results

Results obtained with the model developed are analyzed below,
with reference to two cases:

* A “test case,” where the results are compared with an ana-
lytical model. The purpose of the comparison is to verify
that numerical diffusion is low enough to prevent masking
of the physical instability phenomena. In this case a wide
range of vapor qualities at the heater exit are analyzed.

* An “application case,” where the model developed is used to
analyze CAREM reactor-prototype stability, without pres-
sure feedbacks. In this case the low-quality range is ana-
lyzed in more detail, because it is characteristic of self-
pressurized reactors.

6.1 Test Case. In this section, the stability boundary predic-
tion of this model is checked against a frequency-domain model
[34]. This model, which we will hereafter call the “analytical
model,” was specifically developed to analyze the system shown
in Fig. 2, which is a simplification of a vertical U-tube
recirculation-type steam generator. This method is strictly

Journal of Applied Mechanics

nondiffusive.
In the analytical model, the following simplifying assumptions
were adopted:

* homogeneous two-phase flow

e constant system pressure

* 1o subcooling boiling

e constant inlet subcooling

e uniform heat flux in the heater zone

e saturation density for subcooling conditions

¢ Jocalized friction in core inlet and outlet, and in riser outlet

In order to be able to compare the results, the same hypotheses
are applied to the numerical model. For the analysis, characteristic
values were introduced to enable obtaining typical stability limits
of a BWR reactor type in natural convection or of a U-type steam
generator.

Figure 3(a) shows a level graph of the amplification factor ob-
tained with the numerical model and the stability limit obtained
with the analytical model. Figure 3(b) shows the level graph of
frequencies. The number of nodes in the riser N, was fixed to
eight for the entire range, accommodating the number of nodes in
the heated region by the adaptive nodalization. In the figure, sub-
cooling number Ny, and Zuber number Ny, are introduced for
this comparison:

N, = Qe PPy _hy=heipr=pg g
Zu — GAh, sub — h, ( )
celtfe pg 18 pX

When the Zuber number is larger than the subcooling number, a
two-phase mixture leaves the heated section, a good agreement
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between the models being verified. This shows that the numerical
model is suitable to analyze cases near the stability boundary. Two
main zones of instability may be observed, as shown in previous
analytical and experimental observations [12,14]. They are the
so-called type-I and type-II oscillations. Type-I oscillations are
important under low power conditions and are caused by the
gravitational pressure drop along the riser. They are important in
the case of self-pressurized reactors. Type-II oscillations are domi-
nant at high-power BWR conditions and are caused by the inter-
action between one- and two-phase frictional pressure drops. Nev-
ertheless, the transition between the two zones is gradual, and
there is no clear-cut boundary line.

It can be noted that there is a more abrupt slope near the type-I
instabilities than near the type II. This causes the type-II instabil-
ity limit to depend more on models. The frequency variations are
continuous, meaning that there is only one dominant eigenvalue in
the entire range. The type-I oscillations have a lower frequency
than those in type I

Figure 4 shows the eigenvalues (z;) at the points indicated in
Fig. 3(a): A is in the stable zone (a=—0.05 s7!), B is at the sta-
bility limit (a=0s7!), and C is in the unstable zone (a
=0.05s7"). All the characteristic frequencies of the system
(imaginary axis) and their decay constants (real axis) can be seen.
The dominant eigenvalues are the ones with the larger real part,
which produces the longer surviving oscillations. It can be noted
that there is a substancial difference between the dominant eigen-
values and the remaining ones.

Figures 5(a)-5(c) show the temporal evolution of a perturbation

on G (nondimensional), for the previous three points on the non-
linear (original) model, compared with the linearized one. The
system is initialized in a steady-state condition, and at 10 s a small
perturbation on G is introduced. In the first place, a total concor-
dance may be seen between the linearized and the original system
in the three cases, the respective evolutions being almost super-
imposed. Diminishing oscillations are observed for point A, self-
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supported oscillations for point B, and increasing oscillations for
point C, showing agreement between the decay (growth) constants
and the calculated amplification factor, according with the previ-
ous analysis. We can also observe a concordance between the
period of the oscillation and the frequency of the calculated oscil-
lation. Figure 5(d) shows the spread of the enthalpy disturbance
along the chimney, in which it can be noticed that both the am-
plitude and period of the wave at the entry remain unaffected
while it is transported up to the exit. This shows the low diffusion
obtained with the adaptive nodalization scheme.

6.2 Application Case. In this section CAREM prototype sta-
bility at nominal conditions is analyzed. The geometries, friction
distributions, and power profile are taken from the CAREM-25
reactor. Figure 6 shows the stability map for a constant dome
pressure, which would be equivalent to an infinite vapor volume.
This case will be used in Sec. 7.2 as a base case for the conver-
gence analysis.

Q. is used as the abscise variable, and the condensation of
steam in the dome, Qy, is used instead of the core inlet subcooling
as the ordinate variable, thus allowing a better visualization of the
region of interest, covering a wide range of Q. values in corre-
spondence with small Qy ones. In this region, oscillations take
place due to the counteraction between buoyancy force and flow.
The case of Q=0 coincides with the case of Nz,=Ng,, and in-
creasing Qy is equivalent to decreasing the core inlet subcooling.

When Qy is relatively high (above approximately 0.75 MW),
the boiling occurs within the core. The sensitivity of the buoyancy
force due to enthalpy perturbations is magnified when increasing
Q.; hence, the system is less stable in this direction.

At low Qy (below 0.75 MW), the boiling boundary position (\)
is located in the riser due to the decrease of pressure with hydrau-
lic height (flashing). The location of \ is more sensitive, increas-
ing the buoyancy force sensitivity, and the system is less stable.

For very low Qy values, \ is near located the riser outlet; the
two-phase region decreases, stabilizing the system.
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mentum equation

This case is conservative from the stability point of view. The
effect of pressure feedback is analyzed in [23,24], where a strong
stabilizing effect is observed; this is because an increment in the
void fraction expands all the coolant, immediately pressurizing
the system, and this tends to decrease the void fraction. Therefore,
the natural consequence is to balance density changes along the
system. In this work, pressure is kept constant to simplify the
convergence analysis.

7 Linear Convergence Analysis

For stability analysis, the code combines the methods of linear-
ization and frequency domain calculations by means of eigenvalue
calculation. This representation allows a straightforward visualiza-
tion of the stability of the linearized system, therefore avoiding an
exhaustive analysis of all possible transients in a time-domain
approach.

In this section, linear convergence is analyzed for the numerical
scheme, for the two cases shown in Sec. 6. The “test case” is of
interest because a wide range of qualities is studied, including
both type-I and type-II oscillations. Moreover, this case relies on
an analytical solution of the problem. The “application case” is of
particular interest because it includes most of the models postu-
lated for the primary system of the reactor analyzed in this work.

7.1 Test Case. In order to analyze the convergence of the
model, the stability limit is calculated using different nodaliza-
tions. The aim is to analyze the influence of numerical errors,
associated with nodalization and time integration, in the stability
prediction, focusing on the momentum and energy equations.

In the first place, the convergence of the method is analyzed,
applying explicit integration to the whole scheme. The cases N,
=5, 10, and 50 are analyzed, arranging the nodes in the heated
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Fig. 8 Comparison of stability limit prediction using (a) adaptive nodalization and fixed nodalization and (b) Courant limit and

lower time step
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Fig. 9 Stability map showing the core influence, in the case of constant core

inlet coolant temperature

zone according to the adaptive nodalization, without the use of
intermediate steps. The case of 50 nodes was found to be a con-
verged solution. The results are shown in Fig. 7(a).

In the case of a coarse nodalization, as is the case of N,=5,
discontinuities may first be observed that match the changes in the
number of nodes in the heater. This results from discontinuities in
the Courant relation in the first node, which acts as an adjustment
node, as explained in Sec. 5.2. These discontinuities becomes al-
most imperceptible beyond N,=10, where the weight of the first
node is sufficiently low. On the other hand, in the case of low
quality the required time step due to the Courant relation over-

003 .
N=40

”

0.00

S 0034

-0.06

Fig. 10 Amplification factor as a function of QV, using differ-
ent numbers of intermediate steps (NIT) in the core
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comes the limit of numerical stability in the momentum equation;
the stability study is therefore not possible in this zone. An over-
prediction of the instability, weakening when the nodalization is
refined, can also be observed, which causes the limit to converge
from the stable zone. This behavior is contrary to the one that
might be expected from the point of view of the diffusion of
enthalpy fronts, in which the diffusion should be larger for larger
nodes, stabilizing the system. In this case, provided that the adap-
tive nodalization scheme minimizes the problem of enthalpy front
diffusion, this source of error is reduced regarding others and the
resulting effect is the inverse one. In this case, the integration
error of the momentum equation is of a higher order in relation to
the energy equation. The explicit integration error can be under-
stood as a “negative diffusion” effect, in the sense that it is oppo-
site to the spatial discretization one, which provokes an error can-
cellation in the energy equation when the Courant limit is fulfilled.
Due to the fact that the momentum equation has only a temporary
dimension, the error cancellation effect does not take place, intro-
ducing a destabilizing factor that is increased with the time step.
This would provoke the instability overestimation which has al-
ready been observed in other applications [35].

One alternative is to apply a pseudo-implicit scheme to the
(n+1)+

momentum equations by using an estimated density P; from
the following expression:
d +
reDr = LN Ay pr 9
pj ar | 9)

This is used for the buoyancy force calculation in Eq. (2).

Figure 7(b) shows the result, in which a significant improve-
ment can be observed in the convergence in relation to the fully
explicit case. The trend towards overestimation is reversed in the
case of type-I oscillations. Both cases (explicit or pseudo-implicit
momentum equation integration) converge to the same value
when increasing the nodalization.
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Another interesting point is the comparison of the results ob-
tained with adaptive and fixed nodalizations. For this purpose, the
case for N,=10 is analyzed, the time step calculated according to
the Courant criterion, using both fixed and adaptive nodalizations.
In the case of an adaptive nodalization, N, varies between 9 and
24 along the stability limit. For the purposes of comparison, these
extreme values are used for two fixed nodalizations. The results
are shown in Fig. 8(a).

In the fixed nodalizations, an amplification of the stable zone
may be observed, which is a consequence of the numerical diffu-
sion existent in these cases; this is more noticeable in the zone of
type-II instabilities. This effect diminishes when increasing the
number of nodes in the heater. Nevertheless, it is not possible to
approach the stability limit predicted by the adaptive nodalization
without also increasing the nodalization in the riser.

Discontinuities in the stability limit may additionally be seen in
the case of fixed nodalizations, which match the movement of the
boiling boundary (\) from node to node. When this happens, the
fluid residence time in these nodes changes sharply, causing a
discontinuity in the numerical diffusion of the model in the vol-
umes containing two phases. This effect does not take place in the
adaptive nodalization, whereas in the case of fixed nodalizations it
is reduced as the nodalization is increased.

The time-step effect will now be analyzed. In the case of adap-
tive nodalizations, Az is adjusted in agreement with the Courant
criterion, varying from 0.05 to 0.8 s along the stability limit. Fig-
ure 8(b) shows the comparison when imposing Ar=0.01 s on the
whole range, using the same adaptive nodalization scheme.

As explained in Sec. 5.2, the discretization and time integration
errors tend to cancel each other out when Ar fulfills Courant’s
criterion in all nodes. When Ar is reduced the time integration
error diminishes, leaving only that due to spatial discretization,
which tends to spread the enthalpy fronts, stabilizing the system.
As in the case of fixed nodalizations, some discontinuities can
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also be noted matching the movement of the boiling boundary (\)
from node to node, and which are associated with the up-wind
scheme.

7.2 Application Case. In this section, the case shown in Sec.
6.2 is taken as a base case for the convergence analysis, that is to
say, the reactor primary system without the pressure feedback
modeling.

The nodalization effect can be observed in the diffusion of
small perturbations along the circuit. In this case, flow variations
cause two types of perturbations:

1. Those at the core exit, propagating along the riser. These
perturbations are produced in the two-phase zone and are the
cause of the system instabilities.

. Those at the SG exit (on the primary side), which will
propagate along the downcomer. These perturbations are
produced in the single-phase zone and are dominant only in
the more stable regions.

Figure 9 shows the stability map when the propagation of per-
turbations in the SG and the downcomer are not modeled, the
same nodalization for the hot branch being used. This results in a
condition of constant temperature at the core inlet. As can be seen,
the stability map obtained is similar to the one in Fig. 6, showing
some differences in the more stable region (high Q,, low Qy) due
to the fact that the dominant oscillation modes in this region are
the ones related to the propagation of disturbances along the cold
branch. Nevertheless, in the more unstable regions the amplifica-
tion factor is similar, provided that the two-phase dynamic is
dominant in these conditions. Therefore, the prediction of the sta-
bility limit is more or less independent of the nodalization in the
cold leg, due to the strong dependence on the hot leg nodalization.

Therefore, the constant core inlet temperature condition is
adopted for the convergence analysis of the adaptive nodalization.
The time step and core and riser nodalizations are specially
analyzed.
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Figure 10 shows the amplification factor when Qy increases,
keeping Q. constant at 100 MW. The different curves illustrate
different NIT steps in the core region, keeping constant the time
step and the nodalization in the riser; this is equivalent to different
nodalizations in the core. There is no difference while A is located
in the riser. Conversely, when N\ moves into the core, there are
some discontinuities when moving from node to node. This is, to
a certain extent, due to the fact that in this range the oscillation
periods are comparable to the typical fluid residence time in the
core. Thus, the changes in power affect the system to different
extents according to the size, location, and transferred power to
the volume containing the boiling boundary. Figure 11 shows the
stability map obtained with the adaptive nodalization without in-
troducing intermediate steps. In this case the problem becomes
evident, where a “step” caused by this phenomenon can be ob-
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served. These discontinuities diminish when increasing the core
nodalization, in this case by increasing the intermediate step num-
ber, becoming almost imperceptible for NIT=5, the value finally
adopted.

The time-step effect is now analyzed. This is performed by
varying N,, in order to fulfill the Courant criterion, imposed by the
adaptive nodalization. N, is kept approximately constant by intro-
ducing intermediate steps. In the analysis, three cases are
compared:

Case A: A fully explicit scheme is used.

In Fig. 12 the stability maps for different time steps may be
seen. There are no appreciable variations within the flashing zone.
Conversely, the region where the boiling occurs within the core is
relatively more sensitive to numerical errors. In the same way as
that observed in Sec. 7.1, it can be noted that the convergence
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Fig. 13 Convergence analysis for cases A, B, and C

takes place from the stable zone (becoming more stable as the
time step is reduced), that is to say an inverse behavior from the
expected one from the spatial diffusion point of view. As already
observed, one possible reason is the explicit integration of the
equations which depend solely on time.

Case B: Implicit (or “pseudo-implicit”) integration of the mo-
mentum equation.

The same scheme detailed in Sec. 7.1 is used. The stability map
presented in Fig. 12 shows the convergence for this case. Some
improvement is observed in relation to the fully explicit case,
while still preserving the convergence trend from the stable zone.

Case C: Implicit (or “pseudo-implicit”) integration of the mo-
mentum and fuel temperature equations.

The fuel-temperature equation is integrated by using an esti-
mated temperature for the calculation of the power transferred to
the coolant. The equation is included in the convergence loop of
the program. Equation (5) is thus:

ar.|" L, N
S (W,%-hfperufﬁ*”*-m) (10)
dt|; M.Cp.\ L, & :
where
dT n
C.r;+1)+=_c Al+T’;/~ (11)
; :

The convergence in this case is shown in Fig. 12. A remarkable
improvement is observed in relation with the fully explicit cases
(case A) and implicit momentum equations (case B).

The comparison of these three cases is presented in Fig. 13,
showing the amplification factor for Q.=110 MW, Qy
=2.85 MW, taken as a “test” point in the region with boiling
within the core (out of the flashing zone), as a function of the time
step used in each case.

In the first place, it can be observed that the three cases con-
verge to the same value when the time step is reduced. Case B
converges faster than the fully explicit case, as already observed
in Sec. 7.1. Nevertheless, case C presents the best convergence,
being virtually converged even for the largest time-step. Case C is
the scheme finally adopted for calculations, with the exception of
the ones explicitly stated.
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8 Conclusions

From the results obtained, it can be said that the numerical
scheme is suitable for the stability analysis, and its flexibility al-
lows the parametric study of different hypotheses and numerical
schemes.

The linearization method assures a total conformity of the lin-
earized system, with identical behavior with respect to the nonlin-
ear system when small deviations from the steady state are con-
cerned, regarding both the amplification factor and the frequency
of the oscillations.

The adaptive nodalization scheme shows a very low diffusion
in the transport of small disturbances. This remarkably improves
convergence regarding fixed nodalizations. Moreover, the stability
limit obtained with the fixed nodalizations evidences discontinui-
ties that correspond with movements of the boiling boundary from
one node to another. These discontinuities are minimized in the
case of the adaptive nodalization.

In the case analyzed, the fully explicit integration produces an
overestimation of the instability, with convergence from the stable
zone. The implicit integration of the momentum and fuel tempera-
ture equations inverts this trend in some cases and notably im-
proves the convergence both in type-I and type-II oscillations. The
results obtained with a converged numerical model predict a more
stable behavior with respect to the one obtained with the analyti-
cal model.

In the case of the reactor studied, the disturbances of the steam
generators in the single-phase primary zone are dominant only in
the more stable regions; therefore, the prediction of the stability
limit is roughly independent of the cold-leg nodalization.

The gradient of the amplification factor near the stability limit
is larger in oscillations of type I than in those of type II. There-
fore, the stability limit in the latter is more sensitive to changes in
the model or nodalization.

Nomenclature
A = flow area
a = amplification factor
Cp = specific heat
D;, = hydraulic diameter
DR = decay ratio
f = Moody friction factor
G = mass flow
G = total momentum
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gravity
mass averaged enthalpy

8

h

h flow averaged enthalpy

h' = heat transfer coefficient

K = local friction

L = length
M = mass

N = number of nodes
IT = intermediate time steps in the energy equation
Ny = Zuber number

Nz, = subcooling number

P = pressure

Per = heated perimeter

Q. = core power

Qy = condensation power in the steam zone within

the upper dome

g’ = linear heat flux
T = temperature
T, = oscillation period of asymptotic oscillation

osc
t = time coordinate

W = power-axial-profile weighting factor
y = state variables vector

z = spatial coordinate/eigenvalue

Greek Letters
6 = deviation from the steady-state condition
<I>f20 = two-phase friction loss multiplier
N = boiling boundary position
6 = vertical angle
p = density
o = frequency of asymptotic oscillation

Subscripts and Superscripts
= core
saturated liquid
saturated steam
= input
= time level
= liquid
= output
= riser

N QO WS ~00 w0
Il
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Direct Numerical Simulations of
Planar and Cylindrical Density
Currents

The collapse of a heavy fluid column in a lighter environment is studied by direct nu-
merical simulation of the Navier-Stokes equations using the Boussinesq approximation
Jfor small density difference. Such phenomenon occurs in many engineering and environ-
mental problems resulting in a density current spreading over a no-slip boundary. In this
work, density currents corresponding to two Grashof (Gr) numbers are investigated (10°
and 1.5X10%) for two very different geometrical configurations, namely, planar and
cylindrical, with the goal of identifying differences and similarities in the flow structure
and dynamics. The numerical model is capable of reproducing most of the two- and
three-dimensional flow structures previously observed in the laboratory and in the field.
Soon after the release of the heavier fluid into the quiescent environment, a density
current forms exhibiting a well-defined head with a hanging nose followed by a shallower
body and tail. In the case of large Gr, the flow evolves in a three-dimensional fashion
featuring a pattern of lobes and clefts in the intruding front and substantial three-
dimensionality in the trailing body. For the case of the lower Gr, the flow is completely
two dimensional. The dynamics of the current is visualized and explained in terms of the
mean flow for different phases of spreading. The initial phase, known as slumping phase,
is characterized by a nearly constant spreading velocity and strong vortex shedding from
the front of the current. Our numerical results show that this spreading velocity is influ-
enced by Gr as well as the geometrical configuration. The slumping phase is followed by
a decelerating phase in which the vortices move into the body of the current, pair, stretch
and decay as viscous effects become important. The simulated dynamics of the

flow during this phase is in very good agreement with previously reported
experiments. [DOI: 10.1115/1.2173671]

Introduction

Two fluids having different densities that are initially separated
by a physical boundary and are suddenly allowed to mix, interact
freely forming a density current. Depending on the situation, the
density current can be in the form of a denser intrusion penetrat-
ing horizontally into the lighter fluid along the bottom boundary,
in the form of a lighter intrusion spreading into the heavier fluid
along the top boundary, or as a combination of both conditions.
Examples are snow avalanches, thunderstorm fronts, volcano
eruptions, oil spills in the ocean, the release of contaminants in the
environment and flows generated by the collapse of a building.
Many more examples can be found in the books by Simpson [1]
and Allen [2]. In most environmental and industrial flows of this
type, the density difference is only a few percent and it is caused
either by scalar fields, such as temperature, salinity and a chemical
species, or by particles in suspension leading to the development
of turbidity currents [3,4].

Consider the case of a denser fluid released into a lighter envi-
ronment. Soon after the release a density current develops, which
presents a front, a body, and a tail. The front is a discontinuity in
density that penetrates into the lighter fluid. The denser fluid rides
over a thin layer of light fluid that remains attached to the bottom
boundary as a consequence of the no-slip condition. This results in
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a front whose nose is somewhat lifted above the bottom boundary.
The front of the current is a complex, dynamic region where most
of the mixing occurs. This mixing, driven by Kelvin—-Helmholtz
instabilities and vortex shedding, plays an important role regulat-
ing the flow since it modifies the driving force by entraining am-
bient fluid into the current, and thus, diminishing density differ-
ences. Behind the front, the body and the tail of the current follow,
and their length depends on the amount of dense fluid initially
released. In this region, the vortices shed from the front pair,
stretch, and eventually break down.

The earliest theoretical attempts to describe the spreading rate
of these types of flows were made by von Karmédn [5] and Ben-
jamin [6]. Benjamin [6] proposed that in a lock-exchange configu-
ration the front should move at a speed of +'1/2g(p,—po)/pohos
where pg and p; are the densities of the lighter and heavier fluids,
respectively, kg is the channel half height and g is the acceleration
of gravity. Later works used shallow water theory, along with an
empirical Froude condition to close the model, in order to de-
scribe the propagation of the front [7-11]. Most of these analyses
do not account for the mixing with the ambient fluid.

Several experiments have also been performed to study the
front dynamics. Huppert and Simpson [12] have studied experi-
mentally the release of a fixed volume of denser fluid in a lighter
ambient. They found that initially a given current spreads at an
approximately constant speed and then continuously decelerates
until it is dissipated by viscous effects, calling them the slumping,
inertial, and viscous phases, respectively. If the Reynolds number
of the flow is large enough the deceleration starts with the begin-
ning of the inertial phase. However, for low Reynolds numbers the
inertial phase is not present and the deceleration of the flow oc-
curs dominated by viscous effect during the final viscous phase.
They also proposed an empirical Froude condition that has been
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Fig. 1

Sketch of a density current in cylindrical configuration showing the main features of the

flow. The dashed line shows the initial condition; this is a cylindrical region of denser fluid
located at the center of the domain. After the release a density current develops.

used in box models and to close integral shallow water models of
density currents. The propagating front undergoes three-
dimensional instability in the form of lobes and clefts. Allen [13]
and Simpson [14] devoted a great deal of effort to studying the
lobe and cleft patterns. Simpson [14] proposed that the lobe and
cleft instability forms only in no-slip surfaces and it is caused by
denser fluid overrunning on top of less dense fluid. However, the
exact origin of this instability is still not well known and recent
work [15] has brought Simpson’s theory back into discussion.
Garcia and Parsons [16] and Parsons and Garcia [17] studied the
similarity of density currents fronts finding that the Reynolds
number of the current front plays an important role in the mixing
with the ambient fluid. Very recent observations of density current
activity in the Chicago River, Illinois, by Garcia et al. [18] sup-
ports the observation that the front dynamics is affected by scale
(i.e., Reynolds number effects).

Recently, high-resolution numerical computations have been
performed in both two and three dimensions to explore the dy-
namics of density currents [19-23]. These works have provided a
detailed description of the flow topology at the foremost portion
of the current. The simulations have concentrated on planar and
axisymmetric configurations and, to date, no such effort has been
attempted for the corresponding cylindrical three-dimensional
configuration. In this work, the release of a fixed volume of a
homogeneous fluid into a slightly less dense environment in a
cylindrical configuration is considered, and the results are com-
pared with the planar case.

The planar lock-exchange configuration studied by Hirtel,
Meiburg, and Necker [22] is considered first. We present results
from a three-dimensional simulation with the same conditions as
reported by them and compare the results qualitatively as well as
quantitatively. Then we consider the release of a cylindrical region
of denser fluid into a less dense ambient and compare our results
qualitatively with previously reported experiments [24].

Numerical Formulation

We consider the case of an initial cylindrical volume of heavier
fluid surrounded by an infinite extent of lighter fluid. The released
volume is a cylinder of radius ry and height 2h (see Fig. 1) and
the lighter fluid extends between top and bottom boundaries sepa-
rated vertically by a distance H. Here we consider both the top
and bottom boundaries to be rigid and no slip. Attention will be
restricted to the case where the density difference is due to a
scalar field (e.g., salinity or temperature).

The density difference is assumed to be small enough so that
the Boussinesq approximation can be adopted. With this approxi-
mation density variations are important only in the buoyancy
term. The dimensionless equations of motion read [22]
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Here ii; is the velocity vector, p is the dynamic pressure, p is the
density, Gr is the Grashof number, Sc is the Schmidt number and
e; is a unit vector pointing in the gravity direction. We have
adopted the initial condition half height, &, as the length scale.
Since there is no externally imposed velocity scale for the flow,
the following velocity scale is defined

guho_ (4)

Po
Consequently, the time scale is hy/U,. Here p; is the density of
the denser fluid and p, is the density of the ambient fluid. The
dimensionless density and dynamic pressure are given by
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The two dimensionless numbers in Egs. (1)-(3) are given by
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where v is the kinematic viscosity and « is the diffusivity of
temperature or salinity responsible for the density difference. The
definitions are similar to those employed by Hértel, Meiburg, and
Necker [22] in their study of planar case. Note that the Grashof
number is essentially the square of the Reynolds number. The
ratios ry/ho and ho/H are additional geometric parameters intro-
duced by the initial condition. In this work we will concentrate on
the condition H=2h,, where the denser fluid initially extends ver-
tically over the entire height of the layer.

The governing equations are solved using a de-aliased pseu-
dospectral code [25]. Fourier expansions are employed for the
flow variables along the horizontal directions (x and y). In the
nonhomogeneous vertical direction (z) a Chebyshev expansion is
used with Gauss—Lobatto quadrature points. The flow field is time
advanced using a Crank—Nicolson scheme for the viscous and
scalar diffusion terms. The advection term in the momentum
equation is handled with the Arakawa scheme, where the nonlin-
ear term is alternately considered in its convective form (as writ-
ten in Eq. (1)) followed by the conservative form. A third-order
Runge—Kutta scheme is used to advance the nonlinear terms. The
buoyancy term is also advanced with a third-order Runge—Kutta
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scheme. More details on the implementation of this numerical
scheme can be found in the work by Cortese and Balachandar
[26].

For the planar lock-exchange configuration the computational

domain is a box of size Zx=30XZy=3 XZZ=2, where the span-

wise width of the domain (Zy=3) has been shown to be more than
adequate to capture the lobe and cleft instability [22]. For the
cylindrical configuration the computational domain is also a box

of size L,=30X ZV=3O X I;:Z‘ Periodic boundary conditions are
enforced in the horizontal directions for all variables. At the top
and bottom walls no-slip and zero-gradient conditions are en-
forced for velocity and density, respectively. The use of a rectan-
gular grid to solve a cylindrical problem may seem odd. However,
a Cartesian grid with equi-spaced grid points provides uniform
resolution along the horizontal directions over the entire domain.
This allows adequate resolution as the cylindrical front propagates
radially out and we are able to better resolve the fine structures of
the flow at the front (lobes and clefts). With a cylindrical grid, the
circumferential resolution will be far more than what is needed as
the center is approached. Furthermore, a cylindrical computational
domain requires to carefully address the singularity presented by
the pole at the origin as well as the outflow boundary condition at
the outer extent of the computational domain. Herein, by adopting
a rectangular domain and periodic boundary conditions these dif-
ficulties are clearly avoided.

For the case of the cylindrical current, periodic boundary con-
ditions along the horizontal directions strictly imply an infinite
layer of lighter fluid with a doubly periodic array of cylindrical
regions of heavier fluid released into it. Here we consider the
initial nondimensional radius of the cylindrical region to be 7
=2 and thus the released volume is of unit aspect ratio. Owing to
the periodic boundary conditions, the lateral spacing between the
cylindrical releases is 30 along both the x and y directions. Only
when the head of the gravity current approaches the lateral bound-
aries of the computational domain, it begins to interact with the
front of the adjacent currents. Based on simulation results we
observe that this interaction effect can be neglected till the front
reaches about 2 nondimensional units from the lateral boundaries.
This behavior is similar to that observed by Hértel, Meiburg, and
Necker [22] for the planar case along the x direction. As the cy-
lindrical gravity current expands from the initial radius of 2 to
about 13, its evolution is not influenced by the periodic boundary
condition and can, thus, be taken as an isolated cylindrical density
current spreading into an infinite lighter medium.

In this work, two different Grashof numbers will be considered:
Gr=10° and Gr=1.5X10°. As will be discussed below, with in-
creasing Gr the complexity of the flow increases and thus the
simulation at the higher Grashof number requires increased reso-
lution. In the cylindrical configuration the flow was solved using
approximately 12 millions grid points for Gr=10° (N,=420 X N,
=420 X N,=72) and 28 millions for Gr=1.5X 10° (N,=512XN,
=512XN,=110). For the lock-exchange configuration approxi-
mately 2 million grid points were used for Gr=1.5X10% (N,
=560 X Ny=48 X N,=64). The numerical resolution for each
simulation was selected to have between 6 and 8 decade decay in
the energy spectrum for all the variables, i.e., the three velocity
components and density. The time step was selected to produce a
Courant number smaller than 0.5 for all time steps.

The flow was started from rest and a small random disturbance
superposed on the density field to accelerate the three-dimensional
development. The following initial condition was used in all the
cylindrical simulations to be reported:
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Here 7=VX2+52, v, € (-0.05,0) and 7y, € (~Ax/2,Ax/2). These
last two parameters are random numbers chosen from a uniform
distribution. For the planar case we use the same initial condition
as that of Hirtel, Michaud, and Stein [27], where they justify the
use of an error function to prescribe the initial density profile
based on the solution to the pure diffusion equation for early times
when the flow has not yet developed. The values of y; and 7y,
were selected to produce a decorrelated interface with a white
noise energy spectrum. In this way we assure that there is no
artificially selected wavelength that could evolve in an artificial
lobe and cleft pattern. The solution was advanced in time until the
front reached the radial location of 7=13 to avoid the influence of
the lateral boundaries [27]. The above initial condition ensures
that the rectangular planform of the domain and the grid do not
introduce any bias in the evolution of a cylindrical front.

Results

Planar Lock-Exchange Configuration. In order to validate the
code, we have performed a planar lock-exchange simulation under
the same conditions reported by Hirtel, Meiburg, and Necker
[22], i.e., Gr=1.5X10° and Sc=0.71. This configuration can also
be seen as the limiting case of a cylindrical configuration with the
condition of 77— .

Figure 2 shows three-dimensional views of the flow time evo-
lution visualized by a surface of constant density (p=0.5). The

flow starts as two dimensional (7=5), forming the head of the
current and the nose. Kelvin—Helmholtz instabilities are also ob-
served in the interface between light and heavy fluid. The flow
turns into a three-dimensional state (f=10 and 15) starting with
instabilities at the bottom foremost part of the current that grow
very rapidly, forming a pattern of lobes and clefts. Then, the
whole flow becomes three dimensional (7=20) presenting vortex
pairing at the rear end of the head. These results are in complete
agreement with the findings of Hirtel, Meiburg, and Necker [22]
and with laboratory observations [3].

Figure 3 shows the mean flow visualized by density contours.
Mean variables are computed as spanwise averages of the three-
dimensional results, i.e.

L,
f&2) = Nif f(&.9.2)dy. (10)
L,Jo

In this figure the dynamics of the Kelvin—Helmholtz instabilities
can be more clearly appreciated. Observe that the flow is initially
symmetric, but as it becomes three dimensional the symmetry is
lost. The last snapshot (7=15) also shows the beginning of vortex
pairing on the lower-advancing front.

The front velocity has also been computed from two-
dimensional simulations of the lock-exchange configuration with
Gr=10° and Gr=107. The results are presented in Fig. 4. For
comparison, the result of Hirtel, Meiburg, and Necker [22] is also
shown. Observe that the agreement is not only qualitative as men-
tioned above, but also quantitative. The trend of the front velocity
with the Gr number is also correct.

We will not expand any further on the planar lock-exchange
problem, since Hirtel et al. [22,28] have presented a very fine and
detailed analysis of the flow for this configuration. Now we turn
into the cylindrical configuration.

Cylindrical Configuration

Flow Structure. To study the structure of the flow, simulations
for Gr=10° and Gr=1.5X10° were performed. The Sc number
was set to 1. As addressed by Hirtel, Meiburg, and Necker [22] its
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Fig. 2 Three-dimensional planar current in lock-exchange
configuration for Gr=1.5X10° and Sc=0.71. Flow visualized by
an isosurface of density p=0.5. At =0 the left half of the do-
main has p=1 and the right half p=0. The flow starts as two-
dimensional forming the head of the current (f=5), then the
flow turns three dimensional (=10, 15, and 20) developing the
lobes and clefts observed in experiments.

influence on the flow is weak as long as it is kept order 1.

Figure 5 shows the time development of the flow structure for
the higher Gr=1.5 10°. In this figure the flow is visualized by a
surface of constant density p=0.25. After the release of the denser
fluid, an intrusive front forms. Initially, the flow evolves in an
axisymmetric fashion in which Kelvin—Helmholtz rolls develop
and form the front and the nose. Below the nose, which is raised
from the bottom, an unstable stratified region forms as a conse-
quence of the no-slip condition. In this region, three-dimensional
instabilities develop and evolve into a lobe and cleft pattern in the
foremost part of the current. This feature has been observed in
experiments for both planar [14] and cylindrical currents [29].
Behind the front, the flow develops into a very intense three-
dimensional structure where the Kelvin—Helmbholtz billows shed
from the front deform, bend, and break up. This behavior is simi-
lar to the planar case [22,30].
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Fig. 3 Mean flow of planar current in lock-exchange configu-
ration for Gr=1.5X10° and Sc=0.71. Flow visualized by density
contours. The flow starts symmetrically, but this symmetry is
lost as the flow becomes three dimensional. Observe also the
beginning of vortex pairing at f=15 in the front advancing to the
right.

One of the main differences between the cylindrical (finite vol-
ume release) and the planar lock-exchange configurations is the
maximum density value inside the current. Figure 6 shows the
time evolution of the maximum density, p,,., With time for planar
lock-exchange and cylindrical currents with Gr=1.5X 10°. In a
truly planar lock-exchange configuration, which corresponds to
infinite volume release, at all finite times the maximum and mini-
mum concentration levels remain at 1.0 and 0.0, and, respectively,
correspond to unmixed heavy and light fluids. In the present pe-
riodic finite volume planar lock exchange, over the time interval
computed and shown in Fig. 2, the maximum and minimum con-
centrations remain 1.0 and 0.0, respectively. In the cylindrical
configuration the small finite volume release of heavy fluid
quickly mixes with the surrounding light fluid as it flows out.
Thus the maximum concentration remains equal to 1.0 only for a
short duration after which the concentration decreases. In the
present periodic case the final well mixed concentration will be
2.8% and it depends on the ratio of volume released to the volume
of the periodic box. From Fig. 6 it is clear that the released heavy
fluid is everywhere diluted by entrainment of lighter fluid, but the
mixing process is far from complete. While p,,,,, remains equal to
the initial value (p,,c=1) the cylindrical current moves at ap-
proximately constant velocity. This phase of spreading is called
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Fig. 4 Front velocity in the slumping phase as a function of Gr
number. Planar refers to the planar lock-exchange configura-
tion and Cylindrical to the finite volume release in cylindrical
configuration. The open square is the outcome of the simula-
tion by Hartel, Meiburg, and Necker [22] in good agreement
with our results.

Transactions of the ASME



Fig. 5 Three-dimensional cylindrical current for Gr=1.5X10°
and Sc=1. Flow visualized by an isosurface of density p=0.25.
The figure shows only one quarter of the simulation domain. At
=0 the cylindrical region has p=1 and everywhere outside it
p=0. The flow starts as two dimensional, but soon after it de-
velops three-dimensional instabilities at the front. The flow be-
comes completely three dimensional eventually.

slumping phase [12]. In the case of the planar lock exchange,
Pmax=1 for all the computation time and the front spreads at con-
stant speed.

The lobe and cleft structure of the front is shown in detail in
Fig. 7. Figure 7(a) is a visualization of the front in a laboratory
experiment for Gr~ 108 and Sc=700 using the same geometrical
configuration of the numerical simulations. Figure 7(b) is a close
view of the numerical results for Gr=1.5% 10° and Sc=1. We can
observe in this figure the similitude between the experimental and
numerical results despite the difference in the Sc (Sc in the ex-
periment is two order of magnitude larger than in the numerical
simulation). This is in agreement with the findings of Hirtel,
Meiburg, and Necker [22] who state that the Sc does not influence
the flow as long as it is kept order 1 or larger. In contrast to the
planar case [22], the number of lobes in the front stays almost
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Fig. 6 Maximum value of p (pma,) oOver time. Planar refers to
the planar lock-exchange configuration and Cylindrical to the
finite volume release in cylindrical configuration, both for Gr
=1.5X108. The value of p,,, in the current is related to the front
velocity. While p,,.,=1 the current moves at approximately con-
stant velocity.

constant as the front evolves. However, since the current is
spreading radially, the size of the lobes grows as the current
spreads out until it is dissipated by mixing of light fluid. The
origin and dynamics of this instability are still not well under-
stood. Simpson [14] states that the lobe and cleft instability forms
only in no-slip surfaces and it is caused by denser fluid overrun-
ning less dense fluid. However, recent work by McElwaine and
Patterson [15] suggests that this is not necessarily the case and
that lobes and clefts may still form in free-slip surfaces provided
the Gr number of the flow is large enough. Our simulations show
that the formation of lobes and clefts is highly Gr dependent even
in the case of no-slip surfaces. For example, the solution for Gr
=10’ does not present this feature. The solution is completely
axisymmetric for all time (see Fig. 8).

Fig. 7 Lobe and cleft instability in a cylindrical current. (a):
Visualization of the front in a laboratory experiment for Gr
~10% and Sc=700 using the same geometrical configuration of
the numerical simulations. (b): Numerical result for Gr=1.5
X 10° and Sc=1.
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Fig. 8 Three-dimensional cylindrical current for Gr=10° and
Sc=1. Flow visualized by surface of density p=0.25. The figure
shows only one quarter of the simulation domain. For this
case, the pattern of lobes and clefts is not observed.

The structure of the mean flow is also dependent on the Gr
number. In the cylindrical configuration the mean flow is com-
puted as

1 2@
f(ﬁf)=—f f(7,0.2)d6. (11)
27 ),
Figures 9 and 10 show the mean flow visualized by contours of
constant density for Gr=1.5X 10° and Gr=10, respectively. The
main structures of the flow, namely head, nose, and body are
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Fig. 9 Mean flow of cylindrical current for Gr=1.5X10¢ and
Sc=1. Flow visualized by density contours. The main vortex
structures are indicated in the figure. The dynamic of the vor-
tical structures is in complete agreement with the experimental
results of Alahyari and Longmire [24] for Gr~107.
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Fig. 10 Mean flow of cylindrical current for Gr=10° and Sc=1.
Flow visualized by density contours. For this case the flow pre-
sents weak vortex structures.

present for both Gr investigated, however, there are substantial
differences. The head of the current for Gr=10° features a single
vortex that evolves in time to become a rounded structure. On the
other hand, the current for Gr=1.5X 10° features two vortices in
the head that eventually pair and form a triangular structure. It is
also clearly seen from these figures that the nose location (4 in
Fig. 1) of the current for Gr=10° is always higher compared to the
current for Gr=1.5X 10°. This feature is in agreement with ex-
perimental observations [31]. In contrast to the behavior of the
nose location, the height of the head (hy in Fig. 1) is approxi-
mately the same for both Gr. However, /&y diminishes over time
transforming the potential energy of the head into kinetic energy
of the flow, which is subsequently expended in mixing light fluid
into the current and dissipated by viscous effects. Another clear
difference between the two Gr solutions is the structure and height
of the body (hg in Fig. 1) of the current. The lower Gr current
presents a higher body with a regular structure while the higher Gr
current presents a lower body with vortical structures in it.

Mean Flow Dynamics. When viscous effects are not important
(high Gr) the current that develops from the release of a fixed
volume of heavy fluid passes through three different phases [12],
provided that the volume of released fluid is large enough. Soon
after the release, the current enters the slumping phase, which is
characterized by a nearly constant front velocity. Huppert and
Simpson [12] proposed that this phase lasts until hz=0.075H.
Then, the current enters a self-similarity phase called the inertial
phase. During this phase the front decelerates and the front veloc-
ity evolves as "2 (cylindrical configuration). This self-similar
phase lasts until viscous effects take over, and the current enters
the viscous phase. Depending on the initial configuration of the
flow, the inertial phase may or may not be present. In the follow-
ing we will describe the dynamics of the mean flow during the
slumping and inertial/viscous phases.

An idea of how the flow evolves can be gained from Figs. 9 and
10 that show the time evolution of the mean flow for Gr=1.5
X 10° and Gr=10", respectively. The development of the mean
flow starts with a short acceleration phase. In this phase, the nose
is formed and the front reaches the slumping phase velocity. After
the initial acceleration phase, the flow enters the slumping phase
and moves at approximately constant speed, which depends on Gr.
In this phase the flow presents a very interesting behavior. First, a
large billow is formed in the front (B1 in Fig. 9), which gives the
current the characteristic structure of front (or head) and body.
Then, two more billows are formed. One counter-rotating billow
is formed in the lower region of the front (B2), which has been
interpreted as boundary layer separation by Alahyari and Long-
mire [24] caused by the adverse pressure gradient produced by the
first billow (B1). The other billow (B3) is formed in the body of
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the current and rotates in the same direction as the first billow
(B1). Finally, the first billow formed in the front (B1) retards the
upper part of the front, which gives place to the formation of
another billow at the front (B4). At the same time, billows B2 and
B3 loose their identity.

After the slumping phase, the flow enters into the inertial/
viscous phases. During these phases the third billow formed at the
front (B4) becomes more prominent and undergoes the same dy-
namics as the first billow (B1) in the slumping phase. Billow B4
retards the front and pair with billow BI to form a triangular
wedge that eventually dissipates.

The dynamics of the flow described here is in good agreement
with the findings of Alahyari and Longmire [24] based on their
laboratory experiments. It is worth noticing that the Gr of their
experiment is larger (Gr==107) than our simulation, however, the
dynamics and structure of the flow are quite similar.

Front Velocity. The planar lock-exchange configuration (infinite
volume release) from the previous section can be seen as the
limiting case of the cylindrical configuration with infinite radius.
Thus, the planar lock-exchange density current will stay in the
slumping phase and will never reach the inertial phase, while the
corresponding cylindrical current started from a finite volume re-
lease will transition from the initial slumping phase to an inertial
phase and finally to a viscous phase. The time at which these
transitions take place depend on the amount of fluid being re-
leased and on the Reynolds number of the flow. The slumping
phase is characterized by a constant front velocity, which based on

theory [5,6] takes a value of 1/ V2 for the case of 2hy=H. Based
on a best fit to experimental data, Huppert and Simpson (12)
proposed the same nondimensional front velocity for both planar
and cylindrical currents. In this section we present front velocity
results in the slumping phase obtained from our simulations of
planar lock-exchange and cylindrical currents for two values of
Gr.

The front velocity is computed by tracking the front location
over time. If 7 denotes the front location, the front velocity is
computed as

dry
ip=—0—.

"
The front location is defined as the largest radial location where
the mean flow density equals a preset density value (for example,
p=0.01).

Figure 4 shows the front velocity for the planar lock-exchange
configuration and for the slumping phase of the cylindrical con-
figuration. The figure also shows the value reported by Hirtel,
Meiburg, and Necker [22] (open square) in good agreement with
our results. There is a clear dependency of the front velocity on Gr
number, which was originally observed by Simpson and Britter
[31]. This Gr dependency is less strong for larger Gr (see Hirtel,
Meiburg, and Necker [22]) and it is likely to be negligible for
large enough values of Gr, reaching an asymptotic state close to
the theoretical value.

There is also a well defined dependency on the geometrical
configuration of the current. The cylindrical current is slower than
the planar current. This is in contradiction with the findings of
Huppert and Simpson (12), who reported the front velocity to be
independent of the geometrical configuration. It can be argued that
the numerical simulations are at lower Gr and over a narrow range
compared to the experimental results, and that for larger Gr the
cylindrical currents could reach the same asymptotic state as the
planar lock-exchange configuration. The answer to this question
will be addressed in a forthcoming work.

(12)

Concluding Remarks

In the present work, we have presented and discussed the re-
sults of three-dimensional direct numerical simulations of density
currents in planar lock-exchange and cylindrical configurations.

Journal of Applied Mechanics

There were two main objectives in this paper. The first one was to
validate the present computational methodology by comparing our
results with previously published experimental and numerical
works [22,24] and with experimental visualizations produced for
this work. The second one was to present a detailed analysis and
visualization of three-dimensional density currents in cylindrical
configuration. The simulations were performed employing a de-
aliased pseudospectral code, which allows accurate representation
of all length scales.

We have presented three-dimensional results for Gr=1.5X 10°
and Sc=0.71 and two-dimensional results for Gr=10°> and Gr
=107 with Sc=1 in the planar lock-exchange configuration. The
flow starts as two dimensional and preserves the initial symmetry
for early times. For later times the flow becomes three dimen-
sional, presents a pattern of lobes and clefts at the front, and the
symmetry of the flow is lost. These results are in complete agree-
ment with the results reported by Hirtel, Meiburg, and Necker
[22], qualitatively as well as quantitatively. We have also pre-
sented three-dimensional simulations in cylindrical configuration
for Gr=10° and Gr=1.5x 10, and Sc=1. These highly resolved
simulations allowed for a detailed analysis and visualization of the
flow structures (two- and three-dimensional structures) and dy-
namics. The simulation for Gr=1.5X 10° exhibits the main fea-
tures observed in laboratory experiments [14,29] (see also Fig. 7),
and the dynamics of the flow computed in this simulation is in
agreement with experimental observations [24] at higher
Gr (~107).

The results for front velocity indicate dependencies on both the
Gr and on geometrical configuration. However, it is possible that
with increasing Gr the front velocity will reach an asymptotic
state that is independent of Gr and geometrical configuration.
Simulations for larger Gr are under way and the answer to this
question will be presented in a forthcoming paper.
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Modeling Mixture Formation in a
Gasoline Direct Injection Engine

Mixture formation and combustion in a gasoline direct injection (GDI) engine were
studied. A swirl-type nozzle, with an inwardly opening pintle, was used to inject the fuel
directly in a four stroke, four cylinder, four valves per cylinder engine. The atomization of
the hollow cone fuel spray was modeled by using a hybrid approach. The most important
obstacle in the development of GDI engines is that the control of the stratified-charge
combustion over the entire operating range is very difficult. Since the location of the
ignition source is fixed in SI engines the mixture cloud must be controlled both temporally
and spatially for a wide range of operating conditions. Results show that the volume of
the spark must be considered when discretizing the computational domain because it
highly influences the flow field in the combustion chamber. This is because the volume
occupied by the plug cannot be neglected since it is much bigger than the ones used in
port fuel injection engines. The development of a successful combustion system depends
on the design of the fuel injection system and the matching with the in-cylinder flow field:
the stratification at part load appears to be the most crucial and critical step, and if the
air motion is not well coupled with the fuel spray it would lead to an increase of un-
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burned hydrocarbon emission and fuel consumption [DOI: 10.1115/1.2173284]

1 Introduction

To satisfy CO, emissions restrictions that will be introduced in
the industrialized countries, brake-specific fuel consumption
(BSFC) has to be reduced. Gasoline port-fuel injection engines
that are in production today have a higher BSFC compared to the
direct-injection (DI) Diesel engines. This is due to the higher com-
pression ratio and the unthrottled operation typical of diesel en-
gines, that, however, have higher NO, and soot emissions, slightly
higher noise level, and lower startability. The ideal would be to
put together the best features of both, combining diesel efficiency
with gasoline-specific power. Studies in this direction have shown
that this may be achieved with gasoline direct injection (GDI)
unthrottled engine [1,2]. Fuel is injected directly into the combus-
tion chamber in order to have a mixture with an ignitable compo-
sition near the spark plug at the time of ignition for all loads.
Power is controlled by varying the amount of fuel injected in a
diesel-like manner, and with the unthrottled operation pumping
losses are significantly reduced. The charge cooling during injec-
tion, higher compression ratio, lower octane requirement, and in-
creased volumetric efficiency lead to an improved BSFC up to
30%. The critical step in the development of such engines is the
stratification at partial loads, at which an erroneous mechanism of
mixture formation leads to an increase of engine-specific fuel con-
sumption and unburned hydrocarbon emissions.

2 Fuel Injection System in GDI Engines

GDI injectors can either be single-fluid or air-assisted (two
phase) and may be classified by atomization mechanism (sheet,
turbulence, pressure, cavitation), by actuation type, by nozzle con-
figuration (that can be either swirl, slit, multihole or cavity type),
or by spray configuration (hollow cone, solid cone, fan, multi
plume). A detailed classification of GDI injectors may be found in
[1]. Currently the most widely used injector for GDI applications,
the one analyzed in this paper, is the single-fluid, swirl-type unit
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that uses an inwardly opening pintle, a single exit orifice, and a
fuel pressure, in the range of 70—100 bar.

The liquid emerges from the single discharge orifice as an an-
nular sheet that spreads radially outwards to form an initially
hollow-cone spray. Pressure energy is transformed into rotational
momentum that enhances atomization. The initial spray angle
ranges between 25—150 deg and the Sauter mean diameter (SMD)
varies from 14 to 23 um. Surface roughness may, however, pro-
duce streams of fuel in the fuel sheet, resulting in formation of
pockets of locally rich mixture. The spray has a leading edge (the
main spray tip) that penetrates away from the nozzle tip for about
50 mm in less than 20 ms. A toroidal vortex is also attached to the
periphery. The leading edge of the spray contains a separate sac.

The fuel injection system needs to provide different operating
modes for the different loads. Fuel injection pressure varies in a
range from 40 to 130 bar. In the full-load case a stratified homog-
enous charge is needed and this is done with an early injection,
during the induction. A well-dispersed spray is desirable, with
bigger cone angle and a conical shape. At part load, a late injec-
tion is needed in order to allow stratified charge combustion, with
a well-atomized compact spray to control the stratification. The
fuel is injected during the compression stroke when the cylinder
pressure is about 10 bar, which requires a relatively higher injec-
tion pressure compared to the full-load case. The higher injection
pressure is necessary to reduce the Sauter mean radius (SMD) of
the liquid spray, because the fuel must vaporize before the spark
event occurs in order to limit unburned hydrocarbons (UBHC)
emissions and to have a repeatable ignition process. The smaller
the droplet size, the faster the vaporization occurs. GDI systems
require fuel droplets of under 20 wm SMD (diesel engines require
SMD lower than 8 wm).

3 The Experimental Engine

The numerical code has been tested comparing numerical re-
sults with experiments [3] on a GDI, four cylinder, four valves per
cylinder engine, whose characteristics are reported in Table 1.

This engine is fueled by the injector previously described.
Compared to a multi-point injection (MPI) engine it is character-
ized by a higher compression ratio typical of this class of engines.
As load increases the combustion varies from stratified to homo-
geneous. The engine, as it can be seen in the CAD design of Fig.
1, has in one of each of the cylinder’s intake duct a swirl valve
able to modify the air motion in the cylinder as a function of the
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Table 1 Basic engine geometric characteristics

Bore 7.2 (cm)
Stroke 10.2 (cm)
Displacement 459.5 (cm?)
No. of cylinders 4
Compression ratio 12.5

engine operating conditions. For the full-load case, requiring a
homogeneous charge (stoichiometric air/fuel ratio), the above-
mentioned valve is completely open, determining a well-
organized swirl motion in the cylinder, while at part load, when a
stratified charge is needed, the valve is throttled in order to have a
tumble motion in the chamber. In Fig. 1 a CAD design of the
engine and the related computational grid are shown.

4 Numerical Code

The developed numerical computation tool “NCF 3D” is based
on the well-known KIVA 111 code originally developed by the Los
Alamos Laboratory [4,5]. It employs a finite volume approxima-
tion of the governing 3D Navier-Stokes (N-S) equations in a Car-
tesian or cylindrical reference system in which a multi-block grid
structure is generated. A modified k—¢ turbulence model, ac-
counting for compressibility effects, is used during the arbitrary
Lagrangian Eulerian (ALE) integration of the averaged N-S equa-
tions. The original version has been enhanced by a certain number
of specific submodels necessary for GDI engine modeling as
listed in the following:

4.1 Boundary Conditions—1D Simulations. The whole en-
gine was first simulated following a fully 1D approach [6], at
different full- and part-load conditions. Figure 2 shows the intake
system, the plenum collector, the four cylinders, and the exhaust
system. Ambient conditions are set at the intake and exhaust
boundaries, while the experimental in-cylinder pressure was im-
posed for the combustion.

Then 3D simulations, at the same load conditions, were per-
formed, and the boundaries conditions at the inlet of the 3D do-
main (plenum) and the exhaust were imposed by the correspond-
ing values in the 1D simulations.

Comparisons were made between experimental pressure, the
1D and the 3D numerical ones, in the intake duct, at the location
shown in Fig. 1. The related diagrams are reported in Fig. 3 for a
part-load case (left) and a full-load case (right).

It can be seen that the experimental and numerical pressure

Intake

Helmholtz
resonator

Exhaust

Fig. 1 CAD design of the engine and related computational
grid

profile versus crank angle present the same frequency while some
discrepancies in the magnitude are present. This is due to the heat
transfer and friction effects evaluations, but in order to provide
boundary conditions to the 3D code the 1D results are acceptable,
having a volumetric efficiency error lower than 8%.

Comparisons were also made between the experimental and 1D
numerical pressure in the plenum and experimental and 3D nu-
merical pressure in the cylinder at different loads. Results show an
agreement with a discrepancy of 7% in the worst case.

For the 3D simulations following cycles were also simulated in
order to evaluate the influence of initial conditions. At high engine
speed (up to 5000 rpm), up to three following cycles were simu-
lated in order to minimize the differences. Differences were
slightly bigger for the part-load cases.

4.2 Injection and Atomization Models. A Lagrangian treat-
ment of stochastic particle injection is used for the liquid drops
that simulate the spray. The fuel spray enters the computational
domain as an annular sheet, but in the KIVA spray model this
continuous liquid is artificially divided into discrete Lagrangian
parcels injected into the gas. Each computational parcel represents
a group of physically similar droplets that exchange mass momen-
tum and energy with the surrounding air through source terms in
the gas phase equations. The liquid jet is simulated by injecting
blobs with characteristic size equal to the sheet thickness.

Following Nagaoka’s approach [7] the liquid jet exiting the
injector is treated as a liquid sheet until it reaches its breakup
length. The sheet is analyzed discretizing its volume in small
quantities to which the momentum conservation equation is ap-
plied.

Fig. 2 Schematic of the whole engine in the 1D approach
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in which i, is the velocity vector related to the gas comprehensive
of the turbulence term (for which the k- model implemented in
KIVA was used), and i is the velocity vector related to the liquid
“sheet.” Subscript n refers to the sheet normal direction, g and f to
gas and fluid, respectively. The variation of the sheet thickness
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during the injecti(m peri()d is evaluated i]llp()Sillg mass conserva-
tion:
=—20 = ( —h ) f%(2 i 0)
hy= Ky =ho(w Cos s
L+ Ky/hg o TR0

where K represents the sheet thickness variation, L is the distance
from the injector, and 6 is the angle with respect to the injector
axis [8]. In the previous expression h represents the sheet thick-
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Table 2 Summary of combustion model constants

Table 3 Spark model constants

B, 30.5
B, -54.9
>, 121
c 0.09
c, 8.0
b 0.142

ness at the exit of the injector, while w, represents the character-
istic length so it was put equal to the nozzle diameter, d,. The
breakup length is evaluated by means of the formula [9]

L_lsv‘E [o, Iy
b F Pg\“sweh

where F is the ratio between the amplitude of the pressure waves
that arise in viscous flow over those in a inviscid flow. F is evalu-
ated as follows:

’—[ NBYR |32 3\/W]
F=\N(2-N) <]+M) ) m

N = (1+2.29V)70677

we o Pettals
9y
where u, is the relative velocity between gas and liquid, oy is the
surface tension force of the liquid, and i is the liquid viscosity.
Before the droplet detaches from the liquid sheet, because of the
interaction between the two phases, ligaments of characteristic
size dy are formed on the surface of the conical sheet:

g - § 1/3 KéO_Z 1/6 oy K()p4uze1 1/3 |1/5
=\ 4 REA Y
PgPytrel POy

These ligaments detach as droplets of diameter dj, related to the
ligament size by the following correlation:

dp=188-d,-(1+3-Oh)" Oh,=—2—
Vpsod;,
in which Oh; is the Ohnesorge number of the ligament [10].
dp is proportional to the characteristic size to be put in the
Rosin-Rammler distribution function [11]

1= V= 0D)

D=Cd,

(that is widely used in spray applications) to determine the post
breakup sizes of the primary parcels. Usually for internal combus-
tion engines applications 1.5<g <4, and it was put equal to 3.5
[12]. €, is an empirical factor [13] put equal to 1. In the present
simulation this model was used for primary atomization as was
done in previous work [14].

Once the droplets are formed they may undergo secondary
breakup. This was modeled using different approaches in the dif-
ferent regimes as the droplet Weber number changes as done in

934 / Vol. 73, NOVEMBER 2006

Parameter Arc discharge Glow discharge
Tos 36 8
Moo 50 30

A (m/s) 500 700

previous works [15].

The droplets formed after the atomization of the annular liquid
sheet may undergo secondary breakup. Because of the forces act-
ing on a droplet, as it moves in the surrounding gas, a nonuniform
pressure distribution is developed around it. This process leads to
droplet deformation and subsequent breakup. The relevant forces
in this physical phenomenon are those related with surface ten-
sion, viscosity, inertia, and surface instabilities responsible for
wave growth. Different regimes can be observed as the relative
magnitude of these forces varies. One possible classification [16]
can be made over different ranges of droplet Weber number
(We=plude/a'1).

In the vibrational mode (We=12) fragmentation is caused by
the amplification of droplet deformation originated by vibrational
resonance of the liquid surface. In the bag regime (12<We
<45) the drop breakup is due to the deformation of the droplet in
a baglike structure that disintegrates after a critical value of de-
formation is reached. The chaotic regime (45<We<100) is a
transitional regime in which droplet breakup is due to both bal-
looning and breaking of filaments resulting from the liquid surface
layer ripping. In the stripping regime (100<We<1000) the flow
over the drop causes the ripping of the surface inducing a thin
laminar boundary on it. After a certain stage of deformation, the
boundary layer is stripped from the periphery because of K-H
instability effects, in the form of film and fragments (boundary
layer stripping). Drop diameter gradually reduces and, when a
critical value is reached, the drop disintegrates in smaller ones
with bimodal distribution. The catastrophic regime occurs at We
>100 where both R-T and K-H instabilities are involved. The
first, due to droplet deceleration and related to higher values of
wavelength and amplitude, leads to the formation of bigger drops
then those related with K-H instabilities associated with lower
values of wavelength and amplitude.

For a GDI pressure system the injection velocities can reach
maximum values of about 100 m/s, so the catastrophic regime is
unlikely to happen. During their lifetime drops may decelerate,
breakup, and evaporate and different ranges of droplet Weber
number can be reached, so different secondary breakup mecha-
nisms can then be simultaneously present.

The TAB [17] and DDB [18] models are based on the dynamic
of a single droplet and can therefore be considered as a secondary
breakup model. In the first model the breakup is due to the am-
plification of droplet deformation resulting from vibrational reso-
nance of the surface and therefore was chosen to model droplet
breakup in the vibrational regime. The second is a deformation-
induced secondary breakup model and is used in the bag regime.
The WAVE [19] model considers K-H instability effects and can
be used to simulate the breakup of secondary droplets in the strip-
ping regime. In the chaotic regime, in which bag breakup and
stripping coexist, a competition between the DDB model and the
WAVE model was implemented.

All the models are used with the original value of the constants
except for the WAVE model. For the latter a customized value of

Table 4 Operating condition for the homogeneous case

rpm mep EGR Lambda Spark advance

Case 0 3000 10% 0.954 21.4 deg

6 bar
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the size constant (By=0.59) was chosen, while the time constant
B, was set equal to 80 according to previous work [20,21] in
which the values of the constants were determined for the low
injection pressure range, comparing numerical droplet sizes and
velocities to the experimental ones evaluated by means of a phase
Doppler particle analyzer (PDPA) technique.

4.3 Combustion Model. The approach used is based on a
suggestion made by Abraham et al. [22] and subsequently modi-
fied by Reitz [23] and is particularly suitable for GDI combustion
computation in highly stratified charge conditions due to the
strong influence that the value of the local air/fuel ratio exerts on
the formulation of the burning rate. In this combustion model the
time rate of change of the partial density of species i, due to the
conversion from one chemical species to another, is given by:

dy;, Y=Y,

dt T,

c

where Y; is the mass fraction of species i and Yl.* is the local and
instantaneous thermodynamic equilibrium value of the mass frac-
tion. 7. is defined as the characteristic time scale to achieve the
equilibrium. The characteristic time scale is assumed to be the
same for all the considered species. The characteristic conversion
time scale 7. is assumed to be expressed as:

T. =T+ 7

where 7, is the laminar conversion time scale and 7, the turbulent
mixing time scale.

The characteristic laminar conversion time scale for gasoline
has been evaluated as a function of pressure p, temperature 7, and
equivalence ratio ¢, using the procedure described in [22]. A
power law was used to determine the laminar burning velocity for
the gasoline combustion in each computational cell [24]:

T\ (p\°
S1=S10<F> <p_>
0 0

where for gasoline «, 3 are given by:

a=24-0271¢"" B=-0357+0.14¢""

Fig. 4 Lambda distribution in the combustion chamber. Ho-
mogeneous case.

Sla = Bm + Bd)(d)_ ¢m)
Once the laminar burning velocity in the flame is determined, it is
possible to evaluate the flame thickness and the laminar conver-
sion time by means of the following expressions:

o S, 7 S,
D being an average value of the laminar diffusion coefficient in
the flame front.

The turbulent mixing time scale can be estimated according to
Magnussen and Hjertager [25] and introduces a delay coefficient
as suggested in [22,26]. The use of this coefficient takes into
consideration the delay of the turbulent mixing, allowing, during
the delay period, the laminar flame to move a distance equal to
two or three times the length scale of the turbulent eddies. The
delay coefficient f can be expressed as:

t—1y
f= - exp<_ Td )

k3/2

€K

where:

45 T T T

Fre==ione Ckharl
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Fig. 5 Experimental and numerical indicated cycle for nominal crank timing: 21.4 deg
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Table 5 Operating conditions of three different cases

mep Injected mass Start of injection
rpm (bar) EGR Lambda Spark advance (mg) (deg)
Case 1 1000 4 15% 1.477 18.9 12.94 637.2
Case 2 2000 4 10% 1.58 22.1 12.73 626.6
Case 3 2000 2 20% 2.072 24.1 8.150 638

with k=0.41 (the von Karman constant). oT FPT 20T N U0 + Epe
The turbulent mixing time scale can then be expressed as: 5 sa E o —V
Ppi€p Vi
7= CQE x-f with the following initial conditions:
& T0,r)=T, if0<r<d/2
where
x=1 forh<l T0,r) =T, if r>dji2
in which « is the thermal diffusivity, p, is the gas density of
x=1/h forh=1 plasma, c, is the specific heat at constant pressure, /(r) and U(r)
with are current and voltage as measured across the spark gap, and

0.6(Y,-Y,,)

(Y- Y+ Yo, - ygz)

where subscripts p and ps refer to products of combustion at
actual and stoichiometric conditions, respectively, and f refers to
fuel. The constants are given in Table 2.

4.4 Spark Plug Model. A model that simulates the initial
flame kernel formation and development in SI engines was used
according to [27,28]. The ignition phase includes electrical dis-
charge, plasma breakdown, and shock wave propagation. The
mixture in the combustion chamber is ignited by the electrical
discharge between the spark plug electrodes. The spark discharges
the electrical energy through the arc and glow phases. Plasma is
created and the flame kernel is produced by the plasma. All these
phenomena occur in a very short period of time (less than 1076 s)
and in a relatively small domain, which has a size ranging from
the spark gap distance to the order of the turbulence integral
length scale [24].

The initial temperature and diameter of the plasma are given

by:
(T,
T=|~=2-1]+1]T,
Y\ Ty

-1 E 12
d;= 2[ Y b ]
Y pod(1 =To/T)m

where vy is the specific heat ratio, £, and T}, are the breakdown
energy and temperature respectively, d is the gap distance between
the electrodes, and 7, and p, temperature and pressure in the
combustion chamber.

Heat is dissipated in all directions following the equation:

Fig. 7 Lambda distribution at ignition crank angle. Case 3.
Grid considering the volume of the plug (left) and grid neglect-
ing it (right).

Journal of Applied Mechanics

7g. 1s the energy transfer efficiency for arc and glow discharge,
respectively, given by the following expression [28]:

( 7B,G ~ 7703,0) U3

= +
78,6 = 10B.G Apg+ U3

in which 75 ; and 7. are the energy transfer efficiency for a
quiescent mixture and for very high velocities (v>15 m/s), re-
spectively. Ag ; are given constants (see Table 3) and U is the
voltage as measured across the spark gap.

Kernel radius r; is then determined as the location at which the
temperature equals the adiabatic flame temperature. The kernel
velocity vy is then calculated as the time derivative of r. Two
distinct transition criteria can be used to switch from the ignition
model to the combustion model. The one proposed by Herweg and
Maly [28], used in present simulations, states that the ignition
process should be finished when the kernel velocity reaches the
laminar burning velocity. Another criteria proposed by Reitz et al.
[29] imposes the kernel size to reach the order of the integral
length scale:

where C;=3.5 and /7 is the turbulence length scale related to the
turbulent kinetic energy, &, and its dissipation rate, €, by:

1.5
1;=0.16—
&

Fig. 8 Lambda distribution at ignition crank angle. Case 1 (up)
and case 2 (down) in two different planes.
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5 Engine Simulations

To correctly predict the combustion phase a precise mixture
formation modeling is absolutely necessary, so present simulation
must involve also the intake and exhaust stroke to have a right
prediction of the air motion inside the cylinder which highly in-
fluences the mixture formation.

The grid generation is generated within the main frame of the
original design in CAD-CATIA, while the final multi-block mesh for
the KIVA 111 solver is made by the IBM created interface, the EN-
GAGE code. The resulting computational domain was shown in
Fig. 1. The grid has about 160,000 computational cells and dis-
cretizes the cylinder and part of the intake and exhaust systems.

Different simulations were performed at different loads (from
0 to 6 bar mean effective pressure, mep), engine speed (from
750 to 5000 rpm), and EGR, for homogeneous and stratified

938 / Vol. 73, NOVEMBER 2006

Indicated cycle for cases 1 and 3

charge cases. Homogeneous mixture in this kind of engine is a
globally stoichiometic mixture with a local nonhomogeneity that
can go up to about 5%. This produces significant variations in
ignition delay and in unburned hydrocarbon emission. Locally
rich zones can give, for these engines, soot emissions.

For the homogeneous case results concerning the configuration
shown in Table 4 will be presented. In Fig. 4 two plots of the
lambda distribution are reported in different planes. It can be seen
how the mixture is nearly homogeneous around the stoichiometric
value (lambda=1).

To test the predictive capability of the spark model several
simulations were performed for this case varying the spark ad-
vance timing and comparing numerical results with experiments.
In Fig. 5 the numerical and experimental indicated cycles are

Transactions of the ASME

Downloaded 04 May 2010 to 171.66.16.29. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



reported for the nominal spark timing 21.4 deg. The agreement is
very good. Then different simulations were performed changing
the spark timing (29, 27, 25, 24, 22, 17, 12, 7, 4, and -2 deg),
comparing the experimental indicated cycle to the numerical one
as shown in Fig. 6. The model constants were set once for the
nominal spark advance timing and never changed in all the differ-
ent simulations. The experimental curves are an average of 64
consecutive cycles. As it can be seen in most cases four experi-
mental diagrams are shown and this is because, in some operating
conditions, there were big differences between the four cylinders.
This is probably due to the plenum’s particular shape. The numeri-
cal cycle was acceptable if laying between the four experimental
ones. The results show very good agreement, if not considering
the second plot (29 deg spark advance). This case being very
stable (the four cylinders have the same history), this could be due
to an erroneous modeling of the ignition process since, because of
the shorter time from the start of injection, the air/fuel mixture
presents strong gradients near the plug.

As mentioned before, for GDI engines, the most challenging
problem is the charge stratification and combustion at part load, so
results concerning some cases in the stratified mode will be pre-
sented in the following, as listed in Table 5. As it can be evinced
from the table the part load cases with higher EGR are reported.
These are certainly the most difficult cases since there is little fuel
that needs a very high stratification of the charge, made harder by
the high levels of EGR.

As it can be evidenced in the following figures the volume of
the spark was considered when discretizing the computational do-
main. This is fundamental in GDI engine modeling since the vol-
ume occupied by the spark plug is not neglectable, being it is
much bigger than the ones used in port fuel injection engines.
Figure 7 shows on the left-hand side, for case 3, the lambda dis-
tribution when the spark volume is considered and it is much
different from the one we have on the right-hand side in which the
same case, but in a grid in which this volume is neglected, is
reported.

The reason for this completely different air-fuel distribution is
that the tumble motion, which determines the mixing, is different
in the two cases. If not considering the plug, the tumble in a
vertical plane through the cylinder axis has a characteristic length
equal to half the combustion chamber, but, if the plug is consid-
ered, this characteristic length is half of the previous one. Instead
of having one big vortex, in a vertical plane, we have two distinct
tumble motions on each side of the chamber and this can be seen
in a second cloud of fuel on the left side of the chamber com-
pletely absent in the second picture. In Fig. 8 the lambda distri-
bution at the ignition crank angle is reported for cases 1 and 2.

In Fig. 9 pressure is plotted against crank angle, comparing the
experimental (in each of the four cylinders) and numerical ones
for cases 1 and 3.

6 Conclusions

Mixture formation and combustion in a four-stroke, four-
cylinder, four valves per cylinder gasoline direct injection engine
fueled by a swirl injector with a inwardly opening pintle were
studied [1,2].

At first a 1D simulation of the whole engine was performed in
order to provide more realistic boundary conditions to the NCF-3D
code. Both stratified charge (atpart load) and nearly homogeneous
charge (at higher loads) were modeled for different engine speeds
and different percentage of EGR. Stratified charge is obtained at
part load by throttling a swirl valve in one of the two intake ducts
of each cylinder. This determines a tumble motion in the chamber
that helps in the formation of a stratified mixture near the spark
plug. A modified ignition model was used and tested varying the
spark advance timing in the homogeneous case. Results show
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good agreement. Results also show that the spark plug, which is
an internal obstacle, may affect the in-cylinder flow field and the
subsequent mixture formation, especially at part load. Therefore
the plug volume was considered when generating the computa-
tional grid.

The numerical results globally show that the stratification at
part load is the most crucial and critical step, and if the air flow
motion is not well coupled with the fuel spray, the combustion
could be incomplete with higher exhaust emissions.
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1 Introduction

In dimensionless conservative form, the Navier-Stokes equa-
tions for incompressible viscous Newtonian flows can be written

as

ot

V-u=0

Ju 1
—+V-(uu)=—Vp+R—eV2u+ﬁg (1)

A Stable Semi-Implicit Method
for Free Surface Flows

The present work is concerned with a semi-implicit modification of the GENSMAC
method for solving the two-dimensional time-dependent incompressible Navier-Stokes
equations in primitive variables formulation with a free surface. A projection method is
employed to uncouple the velocity components and pressure, thus allowing the solution of
each variable separately (a segregated approach). The viscous terms are treated by the
implicit backward method in time and a centered second order method in space, and the
nonlinear convection terms are explicitly approximated by the high order upwind
variable-order nonoscillatory scheme method in space. The boundary conditions at the
[free surface couple the otherwise segregated velocity and pressure fields. The present
work proposes a method that allows the segregated solution of free surface flow problems
to be computed by semi-implicit schemes that preserve the stability conditions of the
related coupled semi-implicit scheme. The numerical method is applied to both the simu-
lation of free surface and to confined flows. The numerical results demonstrate that the
present technique eliminates the parabolic stability restriction required by the original
explicit GENSMAC method, and also found in segregated semi-implicit methods with
time-lagged boundary conditions. For low Reynolds number flows, the method is robust
and very efficient when compared to the original GENSMAC method.

[DOL: 10.1115/1.2173672]

To solve Egs. (1) and (2) appropriate boundary conditions need
to be invoked. On solid boundary (rigid walls), no-slip conditions
are applied, i.e, the normal and tangential components of the ve-
locity are taken to be zero.

Boundary conditions on the inflow and outflow need to be pre-
scribed. On the inflow they are given by
1

Uy = Uinflow and U= 0 (3)

where u,, is the normal velocity to the boundary and u, is the
) tangential velocity to the boundary. On the outflow they are given
by

where 7 is time, u is the velocity vector field, p is pressure and g
is the gravity field. The nondimensional parameters Re=LU/v

and Fr=U/ \fgL are the Reynolds and Froude numbers, respec-
tively, where L and U are appropriate length and the velocity
scales, and v is the kinematic viscosity of the fluid.
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accepted until four months after final publication of the paper itself in the ASME
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ou, Ju
p=0 and —=—"=0 (4)
n  on
On the free surface, it is necessary to impose conditions on the
velocity and pressure. For two-dimensional flows, these condi-
tions, in the absence of surface tension, are

(T*nm)'n=0, and (T-n) m=0 (5)

where n=(nx,ny) is the unit normal vector, external to the free
surface, and m=(m,,m,) is the tangent vector to the free surface.
Substituting the total tensor T=-pl+7, with 7 the viscous stress
tensor and I the identity tensor, into Eq. (5) we obtain
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2(du , v, [du v
—p+—| —ni+—ni+|—+— |nn,|=0 (6)
Re| dx dy © \dy ox
du v

ol v
2(9—unxmx + 25nymv + [ } (nymy+ngn)=0  (7)
x ) )

i =
dy dx

In this paper the central issue will be the development of a
semi-implicit method for the Navier-Stokes equations for free sur-
face flows with weaker stability constraints than the explicit
method and such that the resulting linear systems for the velocity
and pressure fields can be solved independently.

Free surface fluid flows have the added difficulty that not only
must the Navier-Stokes equations be solved, but at the same time
the position of a free surface or surfaces, where the conditions (6)
and (7) are applied, need to be determined. Based on the well
known marker-and-cell (MAC) method [1], many numerical
schemes have been developed with the objective of solving these
types of flows. One example of such methods is the generalized
simplified marker-and-cell (GENSMAC) method [2]. The GENS-
MAC method is an explicit time-dependent algorithm, and conse-
quently the size of the time step is subject to the usual parabolic
stability restriction in common with explicit methods for the heat
equation. This means that the maximum allowable time-step size
is computed according to the Reynolds number and to the square
of the spatial step size. In many fluid flow problems the viscous
forces are dominant, and the Reynolds number is often much
smaller than 1. Thus explicit numerical techniques, such as
GENSMAC, often require very small time steps and consequently
very large CPU times. Implicit and semi-implicit schemes offer
the opportunity to overcome these difficulties. Authors such as
[3-8] and others have presented an overview of implicit methods
for the Navier-Stokes equations. The majority of these methods
solve the Navier-Stokes equations in primitive variables using
coupled or decoupled formulations. Henceforth those methods
that solve Egs. (1) and (2) simultaneously at each time step shall
be known as coupled, and those that solve them separately shall
be referred to as segregated.

Coupled methods are highly influenced by the nonlinearities of
the convective terms, are more difficult to implement and tend to
have high computational cost. Pracht [3] presents an implicit ver-
sion of the MAC method, the marker-and-cell-Reynolds-low
(MACRL) method, which solves the Navier-Stokes equations si-
multaneously, coupling the components of velocity and pressure.
However, at each time step a complete set of linear equations for
the primitive variables has to be solved and that can be very
costly. Thus we see that decoupling the equations is a strategy for
lowering computational costs which has been in practice for a
long time. Another example of a numerical scheme that uses this
strategy was proposed by Armenio [4], and called semi-implicit-
marker-and-cell (SIMAC). The SIMAC method is a modification
of the MAC method for the solution of free surface flows with
high Reynolds number using a semi-implicit numerical discretiza-
tion. However, as the SIMAC method aims at the simulation of
high Reynolds number flows it uses a simplification of Eq. (6) and
assumes that p=0 on the free surface. In this work we are con-
cerned with low Reynolds number flows, so that the same simpli-
fication of Eq. (6) cannot be employed.

This paper is concerned with a semi-implicit finite difference
numerical method for solving incompressible viscous free surface
fluid flow problems. The method differs from the MACRL method
since it solves decoupled linear systems for velocity and pressure,
and is distinct from the SIMAC method since it does not make
any simplification to Eq. (6). By using a semi-implicit formula-
tion, the method we shall describe overcomes the parabolic stabil-
ity restrictions of the explicit formulation. We are proposing a
modification to the GENSMAC methodology that uses implicit
discretization of the governing equations and boundary conditions
for the pressure field at the free surface. It will be shown that the
boundary conditions on the free surface need to be treated implic-
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itly; the efficiency of the resulting semi-implicit method will be
demonstrated by verifying that a considerable saving in CPU time
can be achieved.

2 Numerical Method

The proposed numerical method for solving Egs. (1) and (2) is
basically a modification of the GENSMAC method, which is an
improved version of the MAC method. The essence of the MAC
method is the use of virtual marker particles on cells defined on an
Eulerian grid. Marker particles are moved from their positions at
time 7 to their new positions at time 7+ d¢t according to the newly
calculated velocities. In GENSMAC, marker particles are placed
on the free surface only as opposed to other techniques where
particles are placed on the whole domain. The free surface is
approximated by a piecewise linear surface and represented by a
specific data structure (see [9]), supporting the representation of
complex flow geometries. Breakup and recombination may be
dealt with and it has indeed been implemented in the axisymmet-
ric case in [10] and in the tri-dimensional case when surface ten-
sion effects are not dominant [11]. The main thrust of this paper is
the study of implicit techniques for incompressible viscous free
surface flows, purporting to assess their stability properties for this
class of problems. Hence, we shall mainly be dealing with simple
geometry problems.

As the GENSMAC method was designed originally to solve
problems with free surfaces, a classification strategy of the cells of
the mesh is used to represent the movement of the fluid. Figure 1
illustrates the classification of the cells in the mesh for a two-
dimensional flow at a fixed instant of time. Note the empty cells
have been left blank. In the present work the same classification of
cells is used, namely:

*  Empty Cell (E): Cells that do not contain fluid;

e Full Cell (F): Cells that do not have any face in contact with
empty cells;

e Surface Cell (S): Cells that contain fluid and have one or
more faces in contact with empty cells;

e Boundary Cell (B): Cells that belong to the rigid domain;

e Inflow Cell (/): Cells that are on the fluid entrance into the
domain;

e Qutflow Cell (O): Cells that are on the fluid exit out of the
domain.

A first order time discretization of Eqgs. (1) and (2) can be
written as

ot 1
u" - —Revzu”+5l =u"+ &{— V- (uu)™% - Vp'l 4 _Frzg”}
(®)

Veu'=0 9)

where 6; and &, are integers that assume the values O or 1 only. If
6;=56,=0 we have an explicit scheme as in the case of GENS-
MAC. Taking 8;=1 and =0 the semi-implicit (backward im-
plicit) method is obtained. Note that Egs. (8) and (9) couple the
primitive variables even for the case of the explicit scheme. The
projection method is one technique that can be applied to de-
couple the velocity components from the pressure.

In this work, the time-marching procedure is based on the pro-
jection method [4,12,13]. Several different formulations of semi-
implicit and fractional step methods have been developed in the
past. Gresho [14] provided a theoretical foundation that made it
possible to solve the Navier-Stokes equations via a semi-implicit
projection method. The main idea of the projection method is the
use of an approximation of Eq. (8) to determine a tentative veloc-
ity field @, as in
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Fig. 1 (a) Cell classification. (b) Flow visualization of glucose
syrup. For details see [13].

~ 6t 2~ n . n ~ L n

u ReVu_u +5z{ V- (uu) Vp+Fr2g} (10)
where p is a tentative pressure. Generally, this provisional velocity
field is not a solenoidal field. For r=¢;, u(x,#,) and u(x,?,) are
required to satisfy the same boundary conditions, so that on the
boundary u(x,#,) =u(x, ).

The role of the pressure in incompressible flows is to make sure
that the velocity field satisfies the continuity Eq. (9). Using the
Helmholtz—Hodge decomposition theorem [15,16] (also known as
Ladyzhenskaja theorem), which plays a fundamental role in the
derivation of the projection methods commonly used for the nu-
merical solution of the incompressible Navier-Stokes equations, a
genfzral velocity field @ can be decomposed into a solenoidal field

n+

u™" and the gradient of a potential Vi of the following form
ﬁ:u”+‘+V¢ (11)
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Taking the divergence of Eq. (11), and taking into account Eq.
(9), a Poisson equation for the potential ¢ is derived, as

Vytl=v-u (12)

The boundary conditions necessary for solving Eq. (12) on a
domain like the one in Fig. 1 are

*  Homogeneous boundary conditions of Neumann type on the
rigid boundaries (B cells), that is

Y
on
This boundary condition will also be used on the inflows (1
cells) when they exist.
* Boundary conditions for the free surface (S cells) will be
given in Sec. 3.
* Homogeneous boundary conditions of Dirichlet type on the
outflows (O cells), that is

=0.
The pressure field is updated by the equation
+1
n+l _ ~
=p+ 13
pr=pE (13)

Equations (10)—(13) are approximated on a staggered mesh. On
this mesh, the pressure is stored at cell centers and the compo-
nents of the velocity u and v are stored in the middle of the lateral
faces. As in [2], the diffusion terms and the pressure gradient in
Eq. (10) are approximated by central differences. The convective
terms are discretized by the variable-order nonoscillatory scheme
(see [17]), which is a high order bounded upwind technique. In
this paper, an implementation of the above algorithm known as
FREEFLOW2D (see [18]) was employed.

2.1 Stability of the Explicit and the Semi-Implicit
Methods. The use of an explicit time integration in the GENS-
MAC methodology can impose severe restrictions on the allow-
able values of the time step (&) in problems where the viscous
terms of Eq. (1) are predominant. In particular, this occurs when
the flow has a low Reynolds number, as in the case of creeping
flow. The stability restriction due to the explicit treatment of the
viscous terms demands that

Re( 1 1 )-1
=

2 \(80 (o)
where ot is the non-dimensional time step resulting from the
stability condition on the viscous terms.

The GENSMAC method is also subject to another stability re-
striction that relates the time step both to the mesh spacing and to
a reference velocity. That is, a fluid particle cannot travel, in each
time step, a distance larger than the width of a cell. This condition

is known in the literature as the Courant-Friedrichs—Lewy (CFL)
condition and can be written in the form

X oy
—— | and 5tCFLy = r
v max

[l

5tvisc < (14)

Stopr, < ( (15)
where 1| pax and [v|max are the maximum modulus of the veloci-
ties in the directions x and y, respectively.

The point of using a semi-implicit discretization of Eq. (10) is
to overcome restriction (14). The only restriction then to be im-
posed on the time step would be Eq. (15), thus allowing a larger
time step than that required by GENSMAC.

3 Free Surface Boundary Conditions Schemes

As explained in Sec. 2, the projection method is used to de-
couple Egs. (8) and (9). The boundary conditions at the free sur-
face (Egs. (6) and (7)), when discretized implicitly, again couple
the otherwise segregated velocity and pressure fields. The ap-
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Table 1 Comparison of maximum time step for the F1 formu-
lation (1), for the explicit method (ét,,,) and the time step cal-
culated by restriction (14) for Hagen-Poiseuille (confined) and
fountain (free surface) flows with éx=6y=0.05

Problem ot Stexp Ot ise Re
Confined 1.25% 1072 2.5%1075 6.25%x 1073 0.1
Free surface  8.75x 107 2.5%107° 6.25%x107° 0.1
Confined 1.25% 1072 25X 107 6.25%107° 0.01
Free surface 8.5X107° 2.5%107° 6.25% 107 0.01
Confined 1.25% 1072 2.5% 1077 6.25%x1077 0.001
Free surface  8.25x 1077 2.5%1077 6.25%x1077 0.001
Confined 1.25X1072  225x10%  6.25x10°%  0.0001
Free surface  825x10%  225x10%  6.25x10°%  0.0001

proach employed in the discretization of these boundary condi-
tions may substantially affect the overall stability of the methods.
In this paper, two different approaches to the discretization of the
free surface boundary conditions are studied. Both result in a seg-
regated method.

3.1 F1 Formulation and Results. The first formulation,
which we refer to as F1, uses the implicit Eq. (10) with an explicit
discretization of the boundary conditions (6) and (7). The pressure
P! at the free surface boundary is computed by an explicit (time-

lagged) approximation of Eq. (6)

oy 2w, o, <¢?u &‘v) "
P =—| i+ —nj+ | —+_—|nn,
Re| dx dy dy ox :

Equation (7) is used to obtain explicit boundary conditions for
the tangential velocity component while the continuity Eq. (2) is
employed, again explicitly, to compute the normal velocity com-
ponent. The solution procedure begins by computing velocity and
pressure at the boundaries, employing Egs. (7) and (16) in the
case of free surface boundary conditions. After solving Eq. (10)
and solving the Poisson Eq. (12), the velocity and pressure fields
are updated from Egs. (11) and (13), respectively. In this formu-
lation, the boundary conditions on the free surface for solving the
Poisson equation are homogeneous Dirichlet type (#=0). The lin-
ear systems resulting from Egs. (10) and (12) are sparse, symmet-
ric, and positive definite. Consequently, we employed the conju-
gate gradient method for solving them, obtaining a robust and
efficient solver. The last step in the computing cycle is the move-
ment of the marker particles to their new positions. This is accom-
plished by solving the ordinary differential equations

(16)

—=uand —=v
dt dt
by Euler’s method. The fluid surface is defined by a list of par-
ticles and the visualization of the free surface boundary is ob-
tained by connecting them by straight lines.
The F1 formulation was applied to simulate the flow of a fluid
between two parallel plates, separated by a distance L=1m, form-
ing a channel. Two different flows were simulated:

(17)

* Hagen-Poiseuille flow, in which the channel is initially full
and there is no free surface, i.e., confined flow;

* Fountain flow, in which the channel is initially empty and
fluid is injected at the channel’s entrance with a parabolic
velocity profile. In this problem there is a free surface mov-
ing along the channel.

Table 1 displays the maximum time step for different values of
Re that rendered a stable calculation. It can be observed in Table
1 that for the confined problem the maximum time step used is
larger than that of the explicit method, as one would expect. On
the other hand, for the free surface flow problem the maximum
time step used was very close to the one used by the explicit
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Fig. 2 Cell of the free surface in contact, in its right lateral
face, with an empty cell

method. That is, for the free surface problem the stability restric-
tion is no longer imposed by the CFL condition alone. As can also
be observed from Table 1 the time step for this formulation is only
about four times larger than that of the explicit method. The con-
clusion seems to be that the presence of the free surface greatly
influences the stability of the numerical method, and points to-
wards the need for discretizing the free surface condition implic-
itly. Therefore, to construct a more stable semi-implicit method a
special treatment of Eq. (6) is required. This leads us to the next
section.

3.2 F2 Formulation and Results. In the second formulation,
referred to as F2, Eq. (6) is discretized implicitly and written in
1
n+l 2 | ou™ 2

the form
avn+l 8u”+1 &Un+l
-p"+— nyg + n3+< + )nxnv =0
Re| odx dy - dy ox ;
(18)

Notice that Eq. (18) couples the velocity and pressure fields
leading to the coupling of the linear systems arising from Eqgs.
(10) and (12). This coupling is undesirable as it makes the solu-
tion of the linear system much harder to solve.

In this section we present a technique for decoupling Eq. (18) in
such a way that Egs. (10) and (12) may be solved separately. This
technique makes use of Eq. (11) for updating the velocity and of
Eq. (13) for updating the pressure fields to construct new equa-
tions for the potential . To deduce the new equations, consider
first the case where an S cell on the free surface is in contact with
an E cell as depicted in Fig. 2. In this case, the normal vector is
n=(1,0) and Eq. (18) reduces to

n+l _ 2 (é)u"Jrl)
P = Re\ ax

From the continuity Eq. (2) discretizated at the time level 7,
we get

(19)

(714”+1 (?vn-#l
= (20)
ox dy
which when substituted into Eq. (19) produces
2 [ n+l
p"“=——( : ) 1)
Re\ ody

From Eq. (11) the final velocity in the y direction discretizated
at time level ¢, is

9 +1
v =0 - 'g; (22)
Substituting Eq. (22) into Eq. (21) gives
- 2(2_20) -
Re\ gy ay*
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Fig. 3 Cell on the free surface with two adjacent empty cells

Finally, substituting Eq. (23) into Eq. (13) we have

el els

1+ _ i ~
v Re\ &? " Re &y) orp

This equation is used as a boundary condition to define ¢ on the
free surface for the case depicted in Fig. 2.
The second case is given by the configuration of Fig. 3 where

%%) and then Eq. (18) becomes
p,H_] _ L(aur”l . ﬁanr])
Re\ dy ox

From Eq. (11) the velocity in the x direction discretized at time
level ¢, is

(24)

n=(

(25)

9 n+1
utt =~ i (26)
ox
Substituting Egs. (26) and (22) into (25) gives
L (dga Syt a5 Py
n+1=_<_u_i+__i (27)
Re\dy dxdy dx  dxdy
which, after taking Eq. (13) into account, yields
26t Pyt o fon v
g, 28(20) _afm m)
Re \ dxay Re\dy odx

This equation is used as a boundary condition to define ¢ on the
free surface for the case depicted in Fig. 3. The construction of the
equations for ¢ in the other cases where a surface cell (S) is in
contact with empty cells (E) is very similar, and will not be de-
rived here.

The solution procedure for the F2 formulation is analogous to
that for the F'1 formulation, except for the calculation of the po-
tential . In the F1 formulation, the Poisson equation for the
potential ¢ is calculated in the whole domain that contains fluid.
In the F2 formulation, in addition to the Poisson equation, the new
equations for the potential ¢ at the free surface are solved. Now,
the linear system for ¢ is sparse, but nonsymmetric, and therefore
the method used was the bi-conjugated gradients with precondi-
tioning (BCGP). There are, of course, other alternatives to the
BCGP: generalized minimum residual and preconditioned conju-
gate gradient squared are two such examples.

The same problem proposed in the previous subsection is now
used to illustrate the F2 formulation. The results are presented in
Table 2.

As can be seen from Table 2, for creeping flow problems, the
F2 formulation has superior stability characteristics both to the
original explicit method and the F1 formulation. As the Reynolds
number decreases, the stability restriction on the implicit F2 for-
mulation becomes less severe (in comparison with the explicit
method) and it appears that the restriction on the time-step &r is
wholly dominated by the CFL condition. In fact, it would appear
that the time step cannot get as large as the CFL bound would
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Table 2 Maximum &t for the F2 formulation for Hagen-
Poiseuille (confined) and fountain (free surface) flows with éx
=0y=0.05

Problem ot Re
Confined/free surface 1.25% 1072 0.1
Confined/free surface 1.25% 1072 0.01
Confined/free surface 1.25% 1072 0.001
Confined/free surface 1.25% 1072 0.0001

suggest. This is clearly due to the fact that these are linearized
stability restrictions. Furthermore, not only is the underlying prob-
lem nonlinear, the (virtual) particle motion is determined by the
solution of Euler’s method which itself requires a step length re-
striction to ensure stability. From Table 2, it can be seen that the
F2 formulation allowed & to be about 5X 10 to 5X 10° times
larger than the explicit method (see Table 1), as Re is decreased.
Therefore, the use of the implicit free surface boundary Eq. (18)
was enough to make the semi-implicit method considerably more
stable for problems with free surfaces. Perhaps we should stress
that in the F2 formulation, Eq. (7) continued being calculated
explicitly, avoiding the need for the solution of an equation that
couples the velocities # and v. This proved to be very important
for savings in CPU time. In conclusion, the F2 formulation seems
to produce an efficient semi-implicit method with a simple
formulation.

4 Validation and Benchmarking

In this section numerical results using both the implicit formu-
lations are presented, and compared to the explicit method. The
efficiency (in terms of CPU time) of the F2 formulation is com-
pared to that of the F1 formulation and that of the explicit scheme
for problems with Re<<1. The results are encouraging, both in
terms of accuracy and computer time. The following test cases are
considered.

Implementation of the numerical software for the F1 and F2
formulations was tested for fountain flows. For this simple test
case, comparisons between the numerical and analytical solutions
(see [19]) are possible. The model used in the comparisons is the
same that was presented in the previous section, i.e., the channel
filling problem with the free surface. The F1 and F2 formulations
were employed with three spatial meshes: coarse (M1, where &x
=38y=0.1); medium (M2, where 8x=38y=0.05), and fine (M3,
where dx=35y=0.025).

It was observed that the numerical results are very close to the
analytical solution, as are the numerical results produced by the
explicit method. In order to demonstrate the convergence of the
methods, the relative error, in the /, norm, between the numerical
and the analytical solutions was calculated. These are presented in
Table 3.

Up to this point we have developed a semi-implicit segregated
finite difference method for the simulation of free surface flows.
This method would appear to enjoy unrestricted stability proper-
ties rather akin to implicit schemes for parabolic problems. How-
ever, we should stress that the semi-implicit method computing
cycle is considerably more expensive than the same cycle for the
explicit method. This is due to the fact that in the semi-implicit
method two extra linear systems had to be solved at each time step
for the velocities # and ¢. So, for the semi-implicit method to be
competitive with the explicit method the time step used by the
semi-implicit must be large enough to compensate for the extra
work. To show that this appears to be the case we present the
comparison of the CPU times between the semi-implicit method
and the explicit method for the channel flow test problem.

Tables 4-6 show the CPU times for these methods when solv-
ing fountain flow test problem. These tables also display the rela-
tive error (E,) and the maximum step size used, so that the accu-
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Table 3 Time step (&) and relative error (Er) for fountain flow with Re=0.1 and the meshes
M1, M2 and M3. The relative error is computed from the analytical solution given in [19].

M1 M2 M3
Method ot Er ot Er ot Er
Explicit 1.0X 10 3.4E-05 2.5%107 2.3E-06 6.25X107° 2.6E-07
F1 Formulation 4.0x1073 22E-04 8.75X 1073 2.1E-05 2.0%X 107 1.1E-06
F2 Formulation 5.0%1072 3.4E-05 1.25% 1072 2.3E-06 6.25x 1073 2.6E-07

racy of the results can be assessed. The time step for the F2
formulation is larger than that of both the F1 and explicit
schemes. On the other hand, the CPU times are considerably
larger for both methods. All the calculations discussed in this sec-
tion were performed on a Dual Athlon XP MP 2200 MHz with
1.0 Gb memory.

5 Numerical Simulation of the Transient Planar Jet
Extrudate-Swell

In this section we present a simulation of the planar Newtonian
extrudate-swell problem: the extrusion of a viscous fluid through a
die into an inert medium. This is a well-known free surface prob-
lem: at low Reynolds numbers, the fluid swells as it comes out of
the die. Implicit formulations are capable of accurately predicting
the swelling ratio of a Newtonian jet, and should therefore provide
a firm numerical foundation for extension to viscoelastic jets
where the swelling ratio is of considerable industrial importance.

Extrusion is one of the major processing methods in the poly-
mer industry. Polymeric materials when extruded are commonly
found to have larger dimensions than the die. This phenomenon is
known as die swell or extrudate swell. Due to its importance in
industrial applications, this phenomenon has been investigated by
many researchers through experiments and numerical simulations.

Many results have been presented for Newtonian fluids, for
instance, the experimental work of [20,21] among others, and the
numerical results of [22-25], etc. Most of these numerical
schemes were used to solve the axisymmetric extrudate-swell
problem, due largely to the existence of experimental results for

this problem. In the case of plane flows, experimental results are
more difficult to obtain and, consequently, only numerical results
would appear to have been presented in the literature (see
[22,26-35]). An important aspect of the extrudate-swell problem
is the influence of the Reynolds number and the surface tension
since both can affect the swelling (see [22,25,27,34]). We have
chosen to neglect the surface tension (as in [22,33,35]). We have
done so because the main thrust of this paper is to assess the
efficiency (in terms of the time-step size employed and CPU time)
of the implicit formulation for low-Reynolds number free surface
flows.
The extrudate-swell ratio S, (or swelling ratio) is defined as

(29)

where Le is the width of the extruding liquid and L is the diameter
(or width) of the capillary (see Fig. 4(b)). For planar problems
various values of S, can be found in the literature. The following
authors, for example, have obtained the results: 1.155 (Chang,
Patten, and Finlayson [26]), 1.161 (Dutta and Ryan [29]), 1.170
(Chang, Patten, and Finlayson [26]), 1.186 (Georgiou and Bou-
douvis [35]), 1.190 (Tanner [22] and Omodei [27]), 1.196 (Ahn
and Ryan [32]), 1.200 and 1.227 (Crochet and Keunings [30]).
Tanner [22] makes the point that the substantial disparity between
these results is due to the different numerical methods employed
and to the choice of meshes in addition to using a range of Rey-
nolds number and surface tension coefficients.

Table 4 Results for fountain flow with Re=0.1 for the M2 mesh and non-dimensional time ¢

=20
Method Er ot CPU time-(m:s)
Explicit 2.2915%107° 2.5% 1075 104:40
F1 Formulation 2.0654 X 1075 8.75x 1073 60:08
F2 Formulation 2.2977 X 107° 1.25X 1072 5:20

Table 5 Results for fountain flow with Re=0.01 for the M2 mesh and non-dimensional time ¢

=20
Method Er ot CPU time-(m:s)
Explicit 2.1915% 107 25%10°° 875:16
F1 Formulation 1.2528 X 1073 8.5%107° 544:55
F2 Formulation 2.2958 X 107° 1.25% 1072 5:37

Table 6 Results for fountain flow with Re=0.001 for the M2 mesh and non-dimensional time

t=20
Method Er ot CPU time-(m:s)
Explicit 2.0511X 107 2.5%107 7054:50
F1 Formulation 1.4544 % 1073 8.25x 1077 5812:40
F2 Formulation 2.305x 1076 1.25% 1072 5:33
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Fig. 4 Geometry and boundaries for the extrudate-swell problem: (a) unsteady

state and (b) steady state

We consider the time-dependent flow of a two-dimensional jet
flowing through a slit with a uniform input velocity, extruded into
the air. The no-slip condition is imposed on the walls of the slit,
resulting in a parabolic profile at the slit exit where the jet might
be expected to exhibit the phenomenon of swelling. The flow
geometry for the incompressible extrudate-swell problem is de-
picted in Fig. 4.

The input velocity is set to 0w =1.0 m s~! and the kinematic
viscosity coefficient is chosen to be ¥=100.0 m?s~!. The scaling
parameters were taken to be L=1.0 m and U=1.0 ms™' resulting
in Re=0.01.

The plane extrudate-swell problem was solved by the F1 and
F2 methods and by the explicit method. However, due to the
severe restrictions of the time step for the explicit method and for
the F1 formulation, a convergence analysis is presented for the F2
formulation only. The meshes used were: M1, M2, and M3 de-
fined previously, and M4 (8x=48y=0.0125). Figure 5 shows the
configuration of the free surface at different times for the F2 for-
mulation using the mesh M2.

For the F2 formulation, Table 7 shows the effect of mesh re-
finement on the swelling ratio, on the time step, and on the time
step that would be required by the parabolic restriction (14) and
by CFL restriction (15). For the F2 formulation the swelling ratio
increases from 1.081 to 1.182 as the mesh is refined. The results
for the swelling ratio are considered to be in reasonable agreement
with previous numerical predictions. For example, for M3 the
swelling ratio is in agreement with the calculations of [26], and
for M4 with [26,35].

) D |
D |

The CPU time required for the simulation of the extrudate-
swell problem using the F2 formulation was small compared to
those for the explicit method and the F'1 formulation. However, as
the problem is unsteady, the free surface particles are continually
moving, so it was necessary to reduce the CFL number in order to
ensure good numerical resolution in the area where the fluid is in
contact with the atmosphere (see Figs. 5(b) and 5(c)). That fact
becomes more important when the mesh is refined. Therefore, the
value of the time step for the F2 formulation was calculated using
a slightly more restricted CFL condition than Eq. (15) (see Table
7). Table 8 presents a comparison between the CPU time for the
numerical schemes for the mesh M2.

6 Conclusion

A new implicit version of the GENSMAC method has been
developed and tested for the solution of free surface low-Reynolds
numbers flows. The new method, like the GENSMAC method,
employs the SMAC strategy based on the projection method but is
designed to provide a segregated solution of the velocity compo-
nents and pressure.

The new method employs a backward-implicit discretization of
the viscous terms, thus producing a scheme that does not have a
parabolic stability restriction for confined flows. The complete
viscous free surface boundary conditions were considered. Im-
plicit implementation of these boundary conditions requires a cou-
pling of the velocity and pressure fields at the boundaries. Two

Table 7 Results of the extrudate-swell ratio for Re=0.01 using
F2 formulation

Mesh S, ot Blyise Olcr
Ml 1.081 7.5%X107 2.5%107° 1.0x 107!
M2 L.115 5.0%x1073 6.25%107° 5.0% 1072
M3 1.150 1.0X 1073 1.5625 X 107° 2.5%1072
M4 1.182 5.0x107* 3.90625 % 1077 1.25% 1072

Table 8 Results of the extrudate-swell problem for the M2

g mesh for Re=0.01 and non-dimensional time {=30

Method S, ot CPU time-(m:s)
d) ,

Explicit 1.114 25X 107 8093:30
Fig. 5 Free surface profile for extrudate swell of a Newtonian F1 Formulation 1.096 8.5%107° 6126:18
jet using F2 formulation at different non-dimensional times: (a) F2 Formulation L.115 5.0%x1073 65:22

t=6.0, (b) t=12.0, (c) t=18.0 and (d) {=24.6
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different implementation strategies were addressed: an implicit
formulation employing explicit (time-lagged) free surface bound-
ary conditions (F1 formulation), and an implicit formulation em-
ploying semi-implicit (semi-time-lagged) free surface boundary
conditions (F2 formulation).

The F1 formulation allows larger time steps than the original
(explicit) GENSMAC formulation, for confined flows. However,
for free surface flows, it is still subject to a parabolic-like stability
criteria. The F2 formulation was developed to overcome this sta-
bility problem without requiring the simultaneous solution of the
velocity components and pressure. An implicit boundary condition
for the Poisson equation was developed involving only the tenta-
tive components of velocity and pressure. The resulting boundary
conditions are implicit, they involve only the pressure correction
¢, and they do not involve the velocities at time ¢,,;. The intro-
duction of the Poisson equation with this special boundary condi-
tion requires the solution of an augmented linear system which
includes the boundary values, but it is not symmetric and so re-
quires a suitable iterative solution method.

Numerical results for the simulation of low-Reynolds fountain
flows, obtained with the F2 formulation, show that the method
does not have a parabolic stability restriction and from the limited
numerical evidence it appears to have a large stability range.

Benchmarking of the method shows that it is very efficient for
the solution of low-Reynolds number flows, requiring total CPU
times several orders of magnitude smaller than the CPU times
required by GENSMAC for the same problem.

The extension of the present approach to second order time
accurate schemes, employing Crank—Nicholson time discretiza-
tion and second order projection methods, is currently being stud-
ied and it will be reported in future work.

Another extension is related to the implementation of semi-
implicit methods for the three-dimensional incompressible
Navier-Stokes equations with free surfaces. To our understanding,
this extension should not be very complex because the formula-
tion used in this work can easily be extended to the three-
dimensional case. The main modification will be in the technique
for decoupling the velocity and pressure fields in the free surface
equations. For three-dimensional free surface flows, the normal
component of the stress tensor Eq. (5) will have to be imple-
mented using an implicit formulation, as was done in this work for
the case of the F2 formulation. Therefore, to deduce the equations
for ¢ on the free surface, one additional base case will have to be
considered (see [36]).
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Modeling of Crack Propagation in
Thin-Walled Structures Using a
Cohesive Model for Shell
Elements

A cohesive interface element is presented for the finite element analysis of crack growth
in thin specimens. In this work, the traditional cohesive interface model is extended to
handle cracks in the context of three-dimensional shell elements. In addition to the
traction-displacement law, a bending moment-rotation relation is included to transmit the
moment and describe the initiation and propagation of cracks growing through the thick-
ness of the shell elements. Since crack initiation and evolution are a natural outcome of
the cohesive zone model without the need of any ad hoc fracture criterion, this model
results in automatic prediction of fracture. In particular, this paper will focus on cases
involving mode /Il fracture and bending, typical of complex cases existing in industrial
applications in which thin-walled structures are subjected to extreme loading conditions
(e.g., crashworthiness analysis). Finally, we will discuss how the three-dimensional ef-
fects near the crack front may affect the determination of the cohesive parameters to be

Pablo D. Zavattieri

GM Research and Development Center,
30500 Mound Road,

Warren, MI 48090-9055

e-mail: Pablo.zavattieri@gm.com
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1 Introduction

The cohesive zone model (CZM) has gained significant impor-
tance in the modeling of crack propagation in solids in recent
years. Although this model was first proposed by Barenblatt in
1962 [1] to describe material degradation and separation in a pro-
cess zone in front of the crack tip in brittle materials and then
applied to ductile fracture by Dugdale in 1959 [2], most of the
advances in the implementation of this model into numerical
methods have taken place during the last decade [3-7].

The most commonly used technique to incorporate the cohesive
zone model into a finite element analysis is the discrete represen-
tation of the crack which is accomplished by introducing cohesive
surfaces (or so-called zero-thickness interface elements) along in-
terelement boundaries. In most cases, these special elements are
governed by a cohesive constitutive law that relates the traction
with the opening and shear displacement across the interface
[3-7]. Although other techniques that make use of smeared or
exact representation of the crack regardless of the initial mesh
have been developed in the last few years [8—10], the utilization
of interface elements remains attractive essentially due to the sim-
plicity and effectiveness in some applications. In fact, the main
advantage is that the complexity of crack initiation and evolution
(including branching, coalescence, and arrest) can be modeled as
a natural outcome of the model, without the need of any additional
fracture criterion.

The first efforts to extend these cohesive models to fully three-
dimensional problems were made by Ortiz and co-workers
[11,12]. Thereafter, similar works have found this tool to be
highly predictable of different kinds of three-dimensional prob-
lems [13,14]. However, there is a set of problems involving thin-
walled structures (such as the analysis of thin plates, fuselage,
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sheet-metal forming, and crashworthiness) where the use of 3D
solid elements would be prohibitive from the computational view-
point. Generally, these engineering problems are solved with shell
or other structural elements [15]. Li and Siegmund [16] made the
first attempt to extend the cohesive zone model for shell elements.
In their work, crack propagation under mode I/III conditions was
studied in aluminum panels. However, the out-of-plane bending
deformation was not contemplated in their cohesive model. It
should be mentioned that, although the extension of the three
dimension cases is relatively simple, shell elements present the
challenge of having additional degrees of freedom (i.e., nodal ro-
tations), which may help to identify other failure modes, such as
surface crack propagating through the thickness of shells under
bending conditions. Most recently, during the review of this paper,
a new cohesive approach was proposed by Cirak et al. [17] in
which the fracture of thin shells, including the out-of-plane bend-
ing mode, was accounted for in the framework of Kirchhoff-Love
theory using subdivision elements, where only the nodal displace-
ments were needed for the shell formulation.

In this work, the cohesive interface model is extended to handle
cracks in the context of three-dimensional shell elements. In ad-
dition to the traction-displacement law, a bending moment-
rotation relation is included to transmit the moment and describe
the initiation and propagation of cracks growing through the
thickness of the shell elements. Unlike the work presented in [17],
the cohesive model proposed in this paper is intended for shell
elements based on the Mindlin theory (commonly used in several
applications) in which the nodal rotations are used for the out-of-
plane bending modes. The paper is organized as follows: The
description of the interface cohesive element and the constitutive
law is given in Sec. 2. Simulations of simple mode I/III crack
propagation problems and bending configuration in a thin elastic
plate are discussed in Sec. 3. Comparisons with 3D simulations
using solid elements showed that the new cohesive model for shell
elements can predict the same material response using the same
cohesive parameters. A study of ductile crack propagation of
elastic-plastic materials and how this affects the determination of
the cohesive parameters is included in Sec. 4. It is shown that
when the same cohesive parameters are used in the solid and shell
models, the results are appreciably different. This is because shell
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Fig. 1 (a) Schematics of the separation between two shell el-
ements. The local coordinates are defined in the middle line of
the interface elements. The upper-left box shows the cohesive
interface elements embedded along quadrilateral shell ele-
ments (for illustration purposes, the shell elements have been
separated). (b) Traction separation law for pure normal separa-
tion. The arrows indicate unloading and loading for A>A\,. The
same triangular law describes the bending moment-rotation re-
lationship under pure rotation (denoted between parentheses).

elements cannot properly predict the three-dimensional deforma-
tional state ahead of the crack front that affects the overall behav-
ior of the material. However, it is demonstrated that the cohesive
zone model can still be used to represent this localized behavior
by including a constitutive cohesive law that considers geometri-
cal and material factors. A numerical technique to modify these
cohesive laws to account for these effects is discussed in Sec. 4.1.
Finally, a detailed analysis of the 3D cohesive zone reveals that
the projection of the cohesive tractions and opening displacements
lead to a well-defined “effective” cohesive law similar to those
obtained by the numerical technique.

2  Model Description

2.1 Interface Elements for Shell Elements. The description
for the formulation of the interface cohesive element for shell
elements is based on the zero thickness four-node linear interface
element described in previous works [6,7] extended to 3-D “line”
interface elements connecting two quadrilateral shell elements.
These interface elements are embedded along shell element
boundaries as indicated in Fig. 1(a).

The model assumes that a perfect interface between two sur-
faces carries forces that oppose separation and shear between
them until decohesion. From that point, the two surfaces will be-
have as distinct entities. The propagation of a crack can thus be

Journal of Applied Mechanics

simulated as the consecutive failure of interface elements. The
cohesive relationship is expressed in terms of the opening dis-
placement A={u,,u, ,up}’ and the traction T={T,,T,,Tx}",
where the subscripts #, t1, and 72 denote the component of the
traction and displacement in the direction of the local axes of
coordinates. The magnitude of the opposing forces before debond-
ing is a function of the relative normal and shear displacement
jumps between the two surfaces, and this relationship is given by
the constitutive cohesive law, T=f(A). The interface between two
shell elements is “intact” until the interface traction reaches a
maximum value 7, and reduces to zero until the displacement
jump reaches the maximum value. The reduction of cohesive trac-
tion can be interpreted as the progressive degradation of an oth-
erwise intact stress state ahead of the crack tip. Details of the
constitutive cohesive laws will be given in the following section.

This shell interface element should be compatible with the for-
mulation of the shell element. In this work, the Belytschko-Lin-
Tsay shell element [ 18] is considered. This shell element, which is
the default shell element implemented in explicit finite element
software DYNA3D [19], is widely used in several applications in-
cluding crashworthiness and structural analysis. The formulation
of this shell element uses the Mindlin theory of plates [20], which
allows for transverse shear strains through the thickness of the
plate, as well as thickness reduction. Since the displacements in a
quadrilateral shell element can be approximated with classical C°
interpolations, each node has six degrees of freedom, three trans-
lational, (x,y,z) and three rotational, (6., 6y, 6,).

2.2 Constitutive Cohesive Law. In this work, the so-called
triangular law introduced by Espinosa and Zavattieri [6,7] is ex-
tended to 3-D interface elements connecting quadrilateral shell
elements. In formulating the cohesive law, a nondimensional
effective displacement  jump is defined by A
= \/(un/5,,)2+/3%(ut1/5,1)2+,B§(u,2/5t2)2, where u,, u,;, and u,, are
the actual normal and tangential displacement jumps at the inter-
face estimated by the finite element analysis, and §,, §,; and S,
are the critical values at which the interface failure takes place.

Assuming a potential of the form ®(u,,,u;,u;)=8,Tmax(N
—\2/2)/(1=\,,), then the components of the traction acting on the
interface in the fracture process zone in the local configuration are
given by

FONEION 1—)\<un) T
Tn=_=____ - R —
u A \S, (1=

n

_ﬁ_@ﬂ_ﬂ(m)m

Ty Nowy N \8, ) (1-)y)
8@ 0(13 (9)\ 1 - )\ Mlz aszax
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where a;=8%(8,/68,) and ay=p3(8,/5,). \ is monotonically in-
creasing and has the form A=max(\,c,\) with N\ =\, at the
beginning. Once the maximum traction is reached, the interface
starts failing, the traction reduces to zero, and any unloading in
the range A, <A =<1 takes place irreversibly. Once the effective
displacement jump A reaches or exceeds a value of 1, the interface
element is broken and the crack is said to have initiated. Subse-
quent failure of neighboring interface elements leads to crack evo-
lution. The most attractive feature of this new law is that this
irreversible behavior is already incorporated in the law. Figure
1(b) shows the variation of the tensile cohesive traction T,/ Tpax
with respect to the nondimensional normal displacement. The area
under the curve for normal traction in the absence of tangential
traction gives the cohesive energy (work of separation) G, for
mode I, namely G;.=8,T.c/2. Similarly, the energies for modes
II and III can be obtained as Gp,.= ,B%Gh. and Gyp.= ﬁ%Gh., respec-
tively. Once A=\, the cohesive interface begins to irreversibly

NOVEMBER 2006, Vol. 73 / 949

Downloaded 04 May 2010 to 171.66.16.29. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



dissipate energy defined as Ggis=G (N max—Ner) /(1= Ngp)-

2.3 Fracture by Bending. In this section, a novel cohesive
formulation that accounts for the effect of cracks growing through
the thickness by bending is proposed. In addition to the traction-
displacement law (Eq. (1)), a bending moment-rotation relation is
included to transmit the moment and describe the initiation and
evolution of cracks. In formulating this cohesive law, a nondimen-
sional effective displacement jump is redefined by adding an extra

term, A= \/(un/5}1)24’3?(”11/5t1)2+B%(ut2/ 5r2)2+Bz(A0/Aemax)2-
Since cracks are allowed to grow along interface elements, and
assuming that the crack will grow in the direction of the maxi-
mum stress produced by bending, only the rotation 6,; in the
direction &,; (parallel to the middle line) will be considered.

Assuming the same potential of Sec. 2.2, the expressions of the
normal and tangential tractions remain the same as in Eq. (1),
except that X has a contribution from the rotation and the bending
moment is given by

ab gD I

1—>\< A ) AT o @)
TT A0 N dAO N \AB,,.)(1-\,)

where &= %8,/ Abyyy). Since B is nondimensional, & has dimen-
sions of length/radians and a maximum moment can be defined as
M = @Tax- If there is only pure rotation along the axis &, this
bending moment-rotation relationship represents a nonlinear rota-
tional spring carrying a moment that opposes the bending. Under
theses circumstances, the cohesive law has the same triangular
shape as the one shown in Fig. 1(b). The rising portion of the
curve describes the elastic behavior of an intact shell and any
loading/unloading takes place linearly with an initial bending
stiffness given by x=M ./ (A\AbOpa). When the bending mo-
ment reaches a maximum value M, a surface crack initiates and
propagates through the thickness. Any unloading in the range A
=[N\, 1] will take place irreversibly with a bending stiffness
lower than the initial value. That bending stiffness will decrease as
the crack grows until the interface element breaks at A=1.

In early works, the concept of including a rotational spring
along shell element boundaries was introduced by Rice and Levy
[21] and later extended to stationary elastic-plastic crack analysis
by Parks and White [22]. In their work, the spring represents the
additional compliance contributed by the presence of stationary
part-through surface cracks. In this new model the same idea is
applied in the context of the cohesive zone model, allowing the
crack to propagate due to the bending moment and in-plane
stresses.

3 Crack Propagation in Elastic Thin Panels

In this section, we will present a simple case of crack propaga-
tion in a precracked elastic thin panel under three different loading
conditions: tension, torsion, and bending. The main purpose of
this study is to compare the new cohesive model for shells with a
fully three-dimensional model based on hexahedral continuum el-
ements and their respective cohesive interface elements. Consid-
ering that the cohesive zone model has been successfully tested
for solid elements in two and three dimensions [3—14], this com-
parison will allow us to determine how well the proposed model
for shell elements is capable of predicting the same fracture be-
havior using less computational time.

The geometry of the precracked panel is presented in Fig. 2(a).
The length of this panel is L=30 cm, the width W=12.7 cm, and
thickness =6 mm. The tensile axis is aligned with the y-direction
and a crack of initial length ay=26 mm lies along the line y=0.
For all the cases, the specimen is simulated using both hexahedral
and shell meshes (see Figs. 2(b) and 2(c)). The hexahedral mesh
has been constructed using the same shell elements as base with
four hexahedral elements through the thickness. The shell element
selected is the Belytschko-Tsay shell with five integration points
through the thickness. In this analysis, cohesive interface elements
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(a) (b) solid elements () Shell elements

Fig.2 (a) Geometry used for the crack propagation analysis of
a precracked elastic thin panel under three different loading
conditions: tension, torsion, and bending; (b) Hexahedral
mesh. (¢) Shell mesh.

are only embedded along the line y=0, so that the crack is con-
strained to grow along the initial crack line. Since the material
used for these simulations (Steel C300) behaves in a brittle fash-
ion, it is assumed that the crack will only grow under pure mode
I and crack branching is not allowed. It should be mentioned that
this kind of assumption is commonly used by several investigators
[4,11,12,14,16,23]. The constitutive material parameters for steel
C300 are E=200 GPa, v=0.3, p=7830 kg/m?. The cohesive pa-
rameters are T,,,,=700 MPa, 5,=0;,=8,=70 um, B;=B,=1.0,
and A.,=0.3. In addition to the condition that the element size has
to be much smaller than the dimension of the block to provide an
accurate representation of the stress near the crack tip, the cohe-
sive element size should be also able to resolve the length over
which the cohesive model plays a role in the elastic solution. For
a simple cohesive law, under pure mode I conditions, Rice [24]
proposed a simple expression of the cohesive zone length given
by the elastic properties, and the cohesive parameters, [,
~(97E/32)(G,./T2,,). Considering the material parameters for
the case to be analyzed in this section, the cohesive zone length is
[.;~9 mm. It is common practice to evaluate this characteristic
length before the finite element meshes are built to ensure conver-
gence in the results [5-7]. In addition to this, a convergence analy-
sis with cohesive element size L,<<[l., was also performed. Fi-
nally, to satisfy all the length scales a cohesive element size of
approximately L,=1 mm was chosen. A similar convergence
analysis was performed to determine the number of layers of ele-
ments needed through the thickness of the plate. It was then de-
termined that for the elastic simulations presented in Secs.
3.1-3.3, five layers of elements through the thickness of the plate
were sufficient. In this preliminary study, the material is treated as
elastic, using the continuum elastic model for large deformations
available in DYNA3D [19]. Discussion on elastic-plastic material is
given in Sec. 4.

Cohesive interface elements connecting hexahedral elements:
Similar to the case of shell elements, the formulation of the cohe-
sive interface elements connecting the faces of two hexahedral
elements is based on a zero-thickness eight-node bilinear interface
element similar to that previously presented in [14]. Like in any
traditional cohesive interface element for 2- and 3-D, only the
displacement-traction relationship constitutes the cohesive law
[3-7,11-14]. The components of the opening displacement are
A={u,,u, ,u,}", and the nondimensional effective displacement
jump becomes A\=[(u,/8,)>+B5(u,/5)*]"> where (u,/ )
=(u; 1 8,1)*+ (uyn/ 5,)*. As a result, the cohesive law employed for
these interface elements is the same as the one given by Eq. (1)
considering &,1=06,,=47,. The main difference between this cohe-
sive law and the one proposed for the shell interface element in
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Fig. 3 (a) Tension test: crack tip position versus displacement
for three different loading rates. (b) Torsion test: crack tip po-
sition as a function of time for the case where the elastic thin
plate is loaded under mode lll conditions.

Sec. 2.1 is that it is not necessary to make any difference between
the tangential components.

3.1 Mode I Crack Propagation: Tension Test. In this case,
the rectangular thin-walled specimen is subjected to dynamic ten-
sile loading on both upper and bottom boundaries given by a
uniformly applied velocity at the top and bottom boundaries, v,
==0.1, 1, and 5 m/s as shown in Fig. 3(a). The simulations were
carried out until the crack reached the other end of the plate. An
evaluation of the stress distribution, crack evolution, and force-
displacement curves showed a good agreement between the fully
three-dimensional model and the shell model.

Figure 3(a) shows the crack tip position as a function of the
applied displacement for the three different loading rates. The
crack tip position is determined by the global position of the in-
tegration point in which the condition A=1 is satisfied. In these
figures the solid line represents the simulations with solids and the
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dashed line the simulations with shells. It is clear from these re-
sults that both models can predict exactly the same material re-
sponse.

3.2 Mode III Crack Propagation: Torsion Test. To further
test the model, the same specimen is simulated with solid and
shell elements under torsion load. As in the previous case, the
boundary conditions are only applied on the top and bottom
boundaries, except that in this case a constant rotational velocity

field of #=0.08 rad/s is applied. These geometry and loading con-
ditions create a mode III stress field near the crack trip/front. The
loading conditions and cohesive parameters are similar for both
models. Given the asymmetric conditions at the crack plane, the
moment-rotation relationship does not play an important role yet.
However, this problem complements in some way the one consid-
ering only pure mode I. The results of these simulations are de-
picted in Fig. 3(b). The crack tip position as a function of time is
similar for both cases. A closer examination of the middle plane in
the solid case revealed that the stress field was similar to the one
with shell elements.

3.3 Bending Test. In this case, the same precracked plate is
loaded in a three-point bending setup. Unlike traditional setups to
study crack propagation, in this specific problem the applied load
is perpendicular to the plane of the plate such that out-of-plane
bending is induced. The main idea behind this test is to provoke
through-the-thickness crack propagation. The layout of this ex-
periment is shown in Fig. 4(a). Two cylindrical rods are posi-
tioned under the plate, each one at 10 cm from crack plane. A
third rod aligned with the crack plane is positioned just above the
plate and it moves towards the plane with a constant velocity v,
=1 m/s. The diameter of the rods is 1 cm. It was observed that
one of the advantages of this setup is that the crack front propa-
gates in two directions: (1) perpendicular to the plane of the plate,
along the z-axis from the bottom to the top (through-the-thickness
crack propagation) and (2) in the direction of the original crack
along the x-axis, from the initial crack front to the other side of the
plate (where the local axes are defined in Fig. 2). This leads to a
more controlled crack growth, as opposed to the case without
initial crack where the crack can grow through the thickness in an
unrestrained mode. Although the shell model is not able to explic-
itly predict through-the-thickness crack growth, this configuration
will test the capability of the model to predict the overall response
of the structure.

As in previous cases, the cohesive parameters used for the shell
model are the same as those used in the fully three-dimensional
case. However, in this case the moment-rotation relationship of
Eq. (2) becomes an important part of the overall constitutive co-

hesive law and, therefore, the cohesive parameters A6, and B
need to be determined. Several simulations were performed with
different parameters until a good match was achieved. Figure 4(a)
shows the crack tip position as a function of time for best case

with Af,,,=0.05 rad and ,é: 1.0. In this figure, the crack evolu-
tion is represented by the x-coordinate of the centroid of the in-
terface elements at the time where A=1 is satisfied. In the simu-
lation with solid elements, several interface elements have the
same x-coordinate. However, the time where the crack front
passes through those points may be different. Figure 4(a) shows
that the crack front evidently evolves differently along the various
layers of elements. This confirms that the crack grows in two
directions along the projected crack plane. Furthermore, it was
observed that the crack initiates originally at the intersection of
the initial crack front and the bottom surface and propagates to the
upper surface as it grows in the x-direction.

A second configuration is tested to validate the model param-
eters. The thickness of the plate is reduced to 2 mm, and the
impact velocity is increased to v,=10 m/s. The crack tip position
as a function of time is shown in Fig. 4(b). Although the fully
three-dimensional simulation case shows a strong through-the-
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Fig. 4 Schematics of the three-point bending setup. (a) Crack
tip position as a function of time for case with thickness t
=6 mm and v,=1 m/s. (b) Crack tip position as a function of
time for the case with thickness t=2 mm and v,=10 m/s. (Com-
ment: The dots represent the x-coordinate of the centroid of
the interface elements at the time where they fail. Clearly the
simulation with solids shows the crack evolution in the differ-
ent layers of elements.)

thickness crack propagation, the shell model is able to predict the
crack propagation in the x-direction. Some of the discontinuities
shown in these plots correspond to temporary arrests of the local
crack front. The ability of the model with shell elements to cap-
ture such effects is remarkable. Moreover, it is observed that the
overall force needed in the upper rod to break the plate is similar
using both models.

The bottom views of the cracked plate and the stress field are
shown in Fig. 5 for both models at three different times where the
crack growth takes place. The position of the crack front/tip can
be estimated from the stress field. It should be noted that the stress
shown in the simulation with solid elements is that of the bottom
surface of the plate, whereas the one shown in the case with shells
represents the middle plane stress field. Therefore, the crack tip
position of the model with shells as described in Fig. 4 can be
considered as the position of the crack front at the middle plane.
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4 Three-Dimensional Effects of Ductile Crack Propa-
gation in Thin-Walled Specimens

The potential of the cohesive zone model to simulate crack
propagation in elastic thin plates using shell elements has been
examined in the last section. The material under consideration was
only elastic, and in most cases the crack front was straight. Con-
sequently, the plane stress formulation used by the shell elements
may be suitable to model these kinds of problems. However, this
desired behavior might not be observed in real ductile materials.
The study of ductile fracture in elasto-plastic materials raises
some concerns regarding the mechanical constraint imposed by
the plastic deformation in the region near the crack front. More-
over, during ductile crack propagation of thin metals, a character-
istic phenomenon called crack tunneling is observed. Crack tun-
neling occurs when the initially straight crack front grows more
rapidly in the middle of the thin-walled specimen leading to the
formation of rounded crack front profile. The plastic deformation
around the tunneled crack front departures from the ideal defor-
mational state observed in the elastic cases. As a consequence,
additional out-of-plane components of shear stress become sig-
nificant as the highly plastic deformation takes place near the
crack region. In addition to crack tunneling, slant crack growth
could also occur under certain conditions and materials. This is
when the crack front turns into a 45 deg direction leading to a
mixed mode I/III crack growth problem [25]. The study of slant
fracture and its transition from flat crack is out of the scope of this
analysis. Thus, we will restrict the current study to problems
where crack fronts advance in flat mode.

All these complex mechanisms certainly affect the driving force
of the crack and, consequently, the response of the material. It is
then essential to make use of powerful tools that can accurately
predict these localized phenomena. The cohesive zone model, in
combination with the finite element method and continuum mod-
els, has proven to be a good choice for these kinds of analysis.
Chen et al. [26-28] have extensively carried out fully three-
dimensional analysis of crack growth in thick specimens using the
cohesive model. Since ductile fracture in elasto-plastic materials
is driven by void nucleation, growth, and coalescence, which are
affected by the local constraint, they found a strong dependence of
the cohesive parameters with the constraint conditions (stress tri-
axility), and as a result through-the-thickness variation of these
parameters was considered. Moreover, they found that different
cohesive parameters may be needed for different specimen geom-
etries (i.e., double edge notched and compact test specimens). On
the other hand, Roychowdhury et al. [14] have shown that for thin
specimens, a three-dimensional model with constant cohesive pa-
rameters can fit the experimental results with good agreement, and
yet were able to predict crack tunneling. Moreover, their work
demonstrated the ability of the fully-three dimensional model to
predict crack growth with different crack lengths and other geom-
etries (including compact tests) with only one set of cohesive
parameters.

The use of shell elements in conjunction with the cohesive
model may require a special treatment to capture the fundamental
nature of ductile crack propagation in thin specimens. Since shell
theory is based on a bidimensional state of plane stress [15,20], all
these three-dimensional effects mentioned in the previous para-
graph are essentially ignored by the shell formulation, and any
variation of thickness does not play any role in the simulated
results [29]. It is then expected that the three-dimensional model
and the shell model will lead to different results.

To illustrate the importance of the three-dimensional effect of
tunneling in the crack region, an elasto-plastic specimen loaded in
mode I is simulated with solid and shell elements. Details of this
setup and material model are given later in Sec. 4.1. The same
configuration is simulated with a pure elastic model for compari-
son purposes; however, the cohesive parameters are the same for
all these simulations. Figure 6(a) compares the crack tip position
as a function of the applied displacement for all these cases. Even
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though there is an excellent agreement when the material is elastic
(as observed in Sec. 3.1), a noticeable disagreement in crack
growth between the solid and shell model is obtained for the
elasto-plastic case. Based on the hypothesis that the three-
dimensional simulation contains the most reliable information
about the true deformation process, there is clearly something
missing in the model for shells. The three-dimensional tensile
stress fields (o,,) for the elasto-plastic and pure elastic cases are
shown in Fig. 6(b). For illustration purposes, only one half of the
specimen from the crack plane is shown. The presence of a more
complex three-dimensional stress state ahead of the crack front is
evident in the elasto-plastic case. The same figure indicates the
location of the crack front and the cohesive zone defined as the
region where irreversible energy dissipation takes place 0
<(Ggis/ Gic) <1 (see Sec. 2.2). Although not shown in this paper,
the formation of “shear lips” caused by the plastic deformation on
the free borders was also observed. Figure 6(c) shows the pre-
dicted crack front formation at different stages. The initial straight
crack front evolves into a round-shaped crack front. The dark
region indicates where the material has been totally separated
(where Gg;/ Gi.=1.0). A thick black line on the free surfaces de-
picts evidence of thickness reduction.

Unfortunately, the localized three-dimensional deformational
state near the crack front affects the overall response of the struc-
ture, and the bi-dimensional nature of the plane stress formulation
is evidently not adequate to capture this phenomenon [29]. Nev-
ertheless, it may still be possible to “/ump” this localized behavior
into the cohesive zone model. In this section, we will study this
alternative by explicitly modifying the existing constitutive cohe-
sive law to incorporate some geometrical and material factors that
would eventually take into account the complexity of the tunnel-
ing effect. As an example, a mode I crack propagation experiment
performed by Dodds and co-workers [23] on constrained center-
cracked aluminum panel specimens will be used. It should be
mentioned that, even though this experiment has been modeled
with the cohesive zone model using both solid elements (Roy-
chowdhury et al. [14]) and shell elements (Li and Siegmund [16]),
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both papers have reported different values of cohesive strength.
This discrepancy will be discussed later in the section.

4.1 Analysis of a Center-Cracked Aluminum Panel. Fol-
lowing the work by Dodds and co-workers [14,23], simulations of
an aluminum Al2024-T3 centered-crack panel are performed with
the fully three-dimensional model. Following the description of
Fig. 7(a), the width of the panel is 2w=75 mm. The initial crack
length is a/w=0.333 and the thickness of the plates is ¢
=2.3 mm. Due to the symmetry of this configuration only one-
eighth of the geometry is simulated. Thus, symmetry boundary
conditions are employed accordingly. Cohesive elements are in-
serted in the projected crack plane/line. The element size in the
fracture region is L,=0.1 mm in the crack direction and L,
=0.16 mm in the thickness direction. This provides seven layers
of elements across half-thickness. Mesh convergence studies per-
formed by Dodds [14] demonstrated that L,=25 mm and five lay-
ers of elements across the half-thickness were sufficient refine-
ment to capture proper crack growth and tunneling formation. Due
to the localized high plastic deformation ahead of the crack front,
a convergence analysis was performed to evaluate the different
element formulations to check for hourglass modes and undesired
locking. Finally, it was found that, either, the fully integrated
eight-node hexahedral elements using the mean dilatation method
or the reduced integration hexahedral with stiffness form of the
Flanagan-Belytschko hourglass method [19] could be safely used
for this kind of analyses. Both formulations gave essentially the
same results and were compared with the results reported by pre-
vious works and experiments [14,23].

In order to simulate the quasi-static test with displacement con-
trol loading using an explicit code such as DYNA3D, uniform low
velocities are applied at the nodes on the top boundary. Previous
calculations demonstrated that applied nodal velocities of about
500-750 mm/s were slow enough to prevent inertia effects in the
calculation and satisfactorily fast to improve CPU efficiency. For
the continuum material, the traditional isotropic elastic-plastic
constitutive model that uses the Mises yield criterion is utilized.
The elastic parameters for the Al2024-T3 are E=71.3 GPa and
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v=0.3. The initial yield stress is o,=345 MPa and the plastic
regimen is governed by o=Keg", where K=o0(E/0,)", n=0.1 is
the hardening exponent, o is the true effective stress, and ¢ is the
logarithmic strain. A systematic and parametric study performed
by Roychowdhury et al. [14] led to the following calibrated cohe-
sive parameters: Ty,=2.7-0,=931.5 MPa and Gj.=19 kJ/m?
(equivalent to a material toughness of K;.=38.5 MPaym). Figure
7(c) shows a good agreement between the numerical predictions
and the experimental load-crack extension data. The simulation
with shells will be discussed later.

Simulation with shell elements: Following the same scheme, the
specimen is simulated with quadrilateral shell elements. In this
case only one-quarter of the geometry is modeled with shells. As
shown in Fig. 7(b), the shell mesh utilized is identical to one of
the faces of the fully three-dimensional case. Keeping the same
element size, the number of elements is therefore reduced from
21,700 solid elements and 1750 plane cohesive elements to only
3500 shell elements and 250 line cohesive elements. However,
results using the same cohesive parameters as those used in the
three-dimensional case are markedly different. Crack propagation
is slower than in the real case and the applied peak force is sig-
nificantly overpredicted. Figures 7(c) and 8(a) show the crack
extension and normal applied force for the three-dimensional case
and the shell simulation. The same effect has been observed in
later simulations with specimens of different thicknesses. As ex-
pected, the fully three-dimensional simulations show a strong de-
pendency of the overall material behavior with the specimen
thickness, whereas the shell model predicts the same behavior;
that is, the remote applied stress and crack extension are indepen-
dent of the specimen thickness. It is clear that the cohesive law
needs to be modified in order to take into account the three-
dimensional effect that the shell elements cannot provide.

Calibration of the shell model: As mentioned before, Li and
Siegmund [16] demonstrated that the cohesive zone model could
certainly be used with shell elements to model these kinds of
problems. Nevertheless, they reported a much lower value for the

cohesive strength (7y,,=20,). Prior works on dynamic crack
growth in thin sheets also led to similar findings [30]. This indi-
cates that possible modifications of the cohesive zone model can
involve a reduction of the cohesive strength. However, to the best
of the author’s knowledge, there is no work done on defining
some sort of scaling law to relate the cohesive strength, 7},,, used
in the three-dimensional calculations with the “modified” cohe-

sive strength, T, for a 2D formulation. As previously discussed,
the cohesive strength used in 3D simulations was shown to predict
well different specimens and loading conditions [14]. On the other
hand, the modified cohesive strength for shell elements should
eventually contain information of the geometry and is expected to
vary for different specimen thicknesses.

Looking at this trend, a series of numerical simulations with
shell elements was performed for various values of the cohesive

strength, T, and keeping the same cohesive energy Gj, (the

critical displacement is then computed as 8,=2G./ Tyyy). Figures
8(a) and 8(b) show the crack extension and force as a function of

the remote applied displacement for different values of T, using
the shell model. It is observed that crack growth is delayed for
higher values of T,,,,. Conversely, the peak force increases with
Thax- In conclusion, it was found that, with T,,=1.88 oy
=650 MPa, the shell model gives similar results to the three-
dimensional model. The force-crack extension curve was also in-

cluded in Fig. 7(c) using Tp,x=931.5 and 650 MPa for compari-
son purposes. This value is closer to Li and Siegmund’s findings
[16].

Certainly, this change in the value of 7, is an “adhoc” modi-
fication of the cohesive law to take into account the three-
dimensional effects for this specific thickness and material; hence,
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Fig. 8 (a) Crack extension and force as a function of the uni-
formly applied displacement obtained with the fully-three-
dimensional model and with the shell model using different co-
hesive strength values. The two solid lines indicate the crack
front position at the middle and outer surface of the specimen
for the solid mesh with thickness t=2.3 mm. (b) Correction of
the cohesive strength for shell elements as a function of the
specimen thickness.

it should be expected that this correction would be different for
other thicknesses or material (different values of E,v,o,,n).
Therefore, two more three-dimensional simulations were added
for two more thicknesses, =1 and 3 mm using the constant co-
hesive parameters T,,,,=931.5 GPa and Gj,=19 kJ/m? used in
[14]. Then, the same process was repeated for these two new
specimens. Again, simulations with the shell model were per-

formed for different values of T,,,, for the two cases until good
agreement was achieved. Finally, the best match was attained with

T14x=2.17- 0, for t=1 mm, and Tpax=1.82- oy, for t=3 mm. Fig-

ure 8(c) shows the best match T, versus the specimen thickness.
This clearly demonstrates that the cohesive model for shell ele-
ments is affected by the geometry, at least for the modeling of
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cracks under normal opening.

It should be mentioned that, although it is common practice to
report only the force versus crack extension curves for these kinds
of experiments (Fig. 7(c)), the individual evolutions of these two
variables with respect to the applied remote displacement (Fig.
8(a)) are more sensitive to the cohesive parameters than just the
combination of the two. Therefore, the two curves should be used
simultaneously for calibration and validation purposes.

It should be repeated that this model is based on the assumption
that the three-dimensional simulations give the best match to the
experimental results, and the cohesive law proposed in this section
is primarily an “adhoc” modification to modify crack growth un-
der plane stress conditions to obtain an accurate response of the
material. Certainly this modification can only take place whenever
the three-dimensional model can accurately represent the experi-
mental data in thin plates (where the crack extension and dimen-
sions of the plate are much larger than the thickness of the plate).
Extensions of this model can also be done for thicker plates if the
right set of cohesive parameters is known for the three-
dimensional model, even if these parameters vary with the local
position with respect to the middle plane of the specimen, as
found in [26-28]. However, in those cases where the cohesive
parameters need to be changed for different specimens and bound-
ary conditions in the 3D model, as in [27], the cohesive param-
eters will need to be changed for the shell model as well.

“Effective” cohesive law: Another way to look at this problem
is by analyzing in detail the three-dimensional deformational state
and extract from the calculations useful information that can even-
tually provide some guidelines to define a cohesive law for shell
elements. Thus, it can then be possible to look at the bi-
dimensional solution as a projection of the three-dimensional
case. For instance, the three-dimensional cohesive zone ahead of
the mode-I crack front, defined by the normal cohesive traction, is
shown in Fig. 9(a) (upper corner). The maximum traction (when
T,=Tma) follows a curved shape similar to the tunneled crack
front. The same figure shows the profile of the normal traction
along the x-axis in the direction of the crack growth. Data points
represent the normal traction at each integration point of the three-
dimensional calculation. The average through-the-thickness cohe-

sive traction can be easily obtained by 7,=2/¢'f o ! 2T,,dz (shown
as solid line), where t'=t'(x) is the current thickness. The aver-

aged maximum traction is then defined as T,,,,, which is notably
lower than the cohesive strength used in the three-dimensional

simulations. It was observed that this profile, as well as T,y
remains constant as the tunneling is fully developed and cracks
propagate steadily. Three-dimensional simulations of different
thicknesses reveal that this averaged maximum traction decreases
for thicker panels.

Conversely, the opposite effect was found with the averaged
normal opening (defined as ir,=2/t"[ g "y,dz), in which the aver-
aged maximum critical displacement is greater than the one used
in the three-dimensional simulations and increases with the thick-
ness of the panel. More remarkable is the combination of these

two variables. Figure 9(b) shows the relationship between 7, and
it,. Each dot represents the values at integration points of the
plane cohesive elements at various stages of the crack propagation
simulation. This well-defined “effective” cohesive law is shown
for three thicknesses r=1, 2.3, and 3 mm. The original cohesive
law (Tpax=931.5 MPa and G;,=19 kJ/m?) is also shown in
dashed lines. Even though the shape of the cohesive laws departs
from the original triangular shape, the overall cohesive energy
does not deviate significantly from its original value, which con-
firms the assumption used in the previous section of keeping the
same energy and only modifying the cohesive strength. In all the
cases, the initial stiffness also remains unchanged. Consequently,
these cohesive laws were implemented for shell elements, and
simulations for each thickness were performed. Although, a simi-
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Fig. 9 (a) Normal cohesive traction profile developed near the
crack front. Each dot represents the value at each integration
point and its x-coordinate (initial straight crack front is located
at x=0). The solid line represents its average through the thick-
ness T,. (b) Effective cohesive law (T, vs. u,) for three different
specimen thicknesses.

lar trend to that described in the previous section was observed,
the crack extension and applied force were not as accurate as the
results obtained with the “calibrated” cohesive parameters. One
possible explanation is that the averaged cohesive parameters are
slightly greater than those obtained in the calibration process and,
hence, do not take into consideration the real three-dimensional
character of crack growth by only projecting in a 2D plane. How-
ever, this “effective” cohesive law provides some qualitative in-
sight into the real mechanisms that need to be applied in order to
define cohesive laws that can be compatible with a plane stress
formulation.

5 Conclusions

In this paper, a three-dimensional finite-deformation cohesive
element for shell elements for the finite element analysis of crack
propagation in thin-walled structures was presented. A numerical
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analysis for elastic thin plates was included to assess the capabil-
ity of the model to predict crack growth under mode I/III and
bending loading conditions. Unlike previous models [16], the pro-
posed model incorporates a bending moment-rotation relation to
transmit the moment and describe the initiation and propagation
of cracks growing through the thickness of the shell elements. In
addition, three-dimensional simulations of ductile crack propaga-
tion in elasto-plastic materials were used to emphasize the impor-
tance of plastic constrain in the region near the crack front. This
numerical analysis suggested that the two-dimensional nature of
plane stress shell elements together with the cohesive model may
not be appropriate to accurately predict the three-dimensional de-
formational state ahead of the crack front that evidently affects the
overall behavior of the material. Therefore, the cohesive law for
shells needs to be modified to take into account these geometry
and material factors. For that reason, a scaling law for the cohe-
sive strength is proposed in this work (see Fig. 9). Future direc-
tions will be focused into a dimensional analysis where different
geometry, as well as material parameters, will be included. Along
these lines, it will be possible to come up with a dimensionless

function for the “modified” cohesive strength as T, /0,
=II(t/1,E/ oy,n,Tpax/ 0y), where the thickness 7 may be normal-
ized by the ligament size (/) or the plastic zone length (I',).

The versatility and ability of the model to predict crack growth
under various loading conditions have been demonstrated in this
work. This opens a new set of possible solutions for problems
involving fracture in thin-walled structures that otherwise could
not be solved with other models, such as dynamic impact and
penetration of plates, deformation, and failure of tubes and tearing
of membranes. Figure 10 shows some preliminary simulations
performed with this model for various materials.

Finally, the limitations of this model were discussed in Sec. 4.
The model is shown to work under the particular circumstances
described in Sec. 4 and, clearly, a comprehensive and systematic
dimensional analysis to determine clear limits of this model in
terms of the geometric and material parameters (including the
thickness and plastic zone size) is required, and further studies
will be needed in future research works.
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(a) Rod impacting a brittle plate. (b) Bending of an aluminum tube. (¢) Fracture of polymer membranes.
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1 Introduction

Assessing the engineering integrity and life expectancy of ther-
mally stressed components, either under service conditions or dur-
ing the design stage, requires the determination of fracture param-
eters. Over the years much work has been done to evaluate stress
intensity factors for these problems, resulting in collections of
results published in handbook form [1,2]. However, most of these
solutions are restricted to regular cracks in infinite or semi-finite
solids and two-dimensional simple crack geometries. The solution
of complicated three-dimensional crack problems usually requires
such numerical techniques as the finite element method (FEM)
and the boundary element method (BEM).

The attraction of the BEM can be largely attributed to the re-
duction in the dimensionality of the problem; for three-
dimensional problems only the surface of the domain needs to be
discretized [3]. At the same time, and due to the inherent charac-
teristics of its formulation, the BEM provides very accurate results
for problems containing strong geometrical discontinuities. This
makes the BEM a powerful numerical tool for modeling crack
problems [4]. In particular, thermoelastic BEM formulations have
been presented, among others, by Raveendra and Banerjee [5],
Mukherjee et al. [6], Prassad et al. [7], and dell’Erba and Aliabadi
[8].

Evaluation of stress intensity factors using boundary elements
has been done by a variety of methods, such as the extrapolation
of displacements or stress, special crack tip elements, the subtrac-
tion of singularity technique, the strain energy release rate, and
J-integral methods [9]. Techniques based on the extrapolation of
displacements and stresses are easy to implement, but they require
a very high level of mesh refinement in order to obtain accurate
results. Alternating and virtual crack extension methods are also
computationally expensive, as they require multiple computer
runs to solve the problem. On the other hand, path-independent
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Boundary Element Method
Analysis of Three-Dimensional
Thermoelastic Fracture Problems
Using the Energy Domain Integral

A boundary element method (BEM) implementation of the energy domain integral (EDI)
methodology for the numerical analysis of three-dimensional fracture problems consid-
ering thermal effects is presented in this paper. The EDI is evaluated from a domain
representation naturally compatible with the BEM, since stresses, strains, temperatures,
and derivatives of displacements and temperatures at internal points can be evaluated
using the appropriate boundary integral equations. Special emphasis is put on the selec-
tion of the auxiliary function that represents the virtual crack advance in the domain
integral. This is found to be a key feature to obtain reliable results at the intersection of
the crack front with free surfaces. Several examples are analyzed to demonstrate the
efficiency and accuracy of the implementation. [DOI: 10.1115/1.2173287]

integrals, being an energy approach, eliminate the need to solve
local crack tip fields accurately, since if integration domains are
defined over a relatively large portion of the mesh, an accurate
modeling of the crack tip is unnecessary because the contribution
to J of the crack tip fields is not significant. At the same time, the
BEM is ideally suited for the evaluation of path-independent in-
tegrals, since the required stresses, strains, temperatures, and de-
rivatives of displacements and temperatures can be directly ob-
tained from their boundary integral representations. Using the
BEM, Prasad et al. [7] implemented the J-integral due to Kish-
imoto et al. [10] for the analysis of two-dimensional thermoleastic
problems. Its extension to three dimensions was presented by
dell’Erba and Aliabadi [8] together with a decomposition method
for the computation of the mixed mode stress intensity factors.
Among the available methods for calculating fracture parameters,
the energy domain integral (EDI) [11] has shown to be well-suited
for three-dimensional BEM analysis. Applications of the EDI to
solve three-dimensional crack problems using the BEM have been
reported by Cisilino et al. for elasticity [12], elastoplasticity [13],
and fiber-matrix interfaces in composite materials [14]. To de-
velop the domain integral the EDI incorporates an auxiliary func-
tion ¢, which can be interpreted as a virtual crack front advance.
This makes the EDI similar to the virtual crack extension tech-
nique, but with the advantage that only one computer run is nec-
essary to evaluate the pointwise energy release rate along the
complete crack front. In a recent paper, Cisilino and Ortiz[15]
combined the EDI with the M -integral methodology, for the
analysis of mixed-mode cracks. In that work special emphasis was
put on the selection of the auxiliary function ¢. The function ¢
was found to be a key feature to obtain reliable results at the
intersection of the crack front with free surfaces.

This work presents a BEM formulation of the EDI for the
analysis of three-dimensional cracks in thermally stressed bodies.
To the authors’ knowledge this is the first time the EDI is used for
the analysis of three-dimensional thermoelastic problems using
the BEM. Following dell’Erba and Aliabadi [8] the thermoelastic
problem is solved first by using the dual formulation of the BEM
(the dual boundary element method or DBEM). The formulation
of the EDI is presented in a straightforward approach, and the
auxiliary function ¢ assimilated to a virtual crack-front extension.
The computation of the EDI is implemented as a postprocessing
technique, and so it can be applied to the results from a particular
model at a later stage. The implementation takes advantage of the
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@)

Fig. 1 (a) Definition of the local orthogonal Cartesian coordi-
nates at point 7 on the crack front. (b) Virtual crack front
advance.

efficiency of the boundary integral equations to directly obtain the
required stresses, strains, temperatures, and displacement and tem-
perature derivatives. Two approaches are studied for the selection
of the auxiliary function ¢, and their results compared and dis-
cussed. Several examples are analyzed to demonstrate the effi-
ciency and accuracy of the implementation.

2 The Energy Domain Integral

Consider a three-dimensional crack front with a continuously
turning tangent as depicted in Fig. 1(a). Define a local coordinate
system x* at position 7, where the crack energy release rate is
evaluated, given by xT normal to the crack front, x; normal to the
crack plane, and x; tangent to the crack front.

Following Natha and Moran [16], the energy release rate G(7)
due to crack extension in its own plane along a three-dimensional
crack front takes the form (see Fig. 1(a))

(w- &;— o';u;k)n,-dc (1)
C(n)

where w is the strain energy density, 0; and uik are Cartesian
components of stress and displacement derivatives expressed in
the local system x", &) is the unit outward normal to the crack
front in the local crack plane x?—x;,ni is the unit vector normal to
the contour C(7) (which lies in the x?—x; plane), and dC is the
differential of the arc length C. It is worth noting that, although
Eq. (1) comes from a two-dimensional analysis, it applies for the
three-dimensional case, as in the limit as C— 0, plane strain con-
ditions prevail so that three-dimensional fields approach to the
plane problem.

Within the framework of uncoupled thermoelasticity, the strain
is written as the sum of an elastic part sfj and a thermal part:

&= &+ afd; (2)

G(n) = éim &(n)

—

where « is the coefficient of linear thermal expansion and 6 is
temperature. If we make the additional restriction that thermal
strains are bounded, a definition of w which can be used in Eq. (1)
is:

w(s;j,0) = J "oy dely 3)
0

where &];=¢;;—a05; are the mechanical strains.

In order to derive the equivalent domain representation of Eq.
(1), we consider a small segment L, of the crack front that lies in
the local xT—xz plane as shown in Fig. 1(b). Next we assume that
the segment undergoes a virtual crack advance in the plane of the
crack, and we define the magnitude of the advance at each point 7
as Aa(7). Note that Aa(7) varies continuously along L, and it
vanishes at each end of the segment. Now let
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crack front

Fig. 2 Tubular domain surrounding a segment of the crack
front

G(n) = f G(n)Aa(n)dny (4)
Le

where G(7) is the integral defined in Eq. (1). Note that while

G(7) belongs to the point-wise energy release rate, G gives the
total energy released when the finite segment L. undergoes the
virtual crack advance.

The appropriate domain form of the point-wise crack-tip con-
tour integral can be obtained from Eq. (1) by considering a tubular
domain V surrounding the crack segment (see Fig. 2). As shown in
the figure, the surface S, is formed by translating the contour C
along the segment L., and S, stands for the outer surface of V
including the ends. Next an auxiliary function ¢ is introduced,
which is sufficiently smooth in V and it is defined on the surfaces
of V as follows:

on S, )
0 onS,

Finally, in the limit as the tubular surface S, is shrunk onto the

crack segment L., and after applying the divergence theorem, the

domain integral is obtained:

{Aaw) &)
P =

G= J {[(Ujju;,k —w 89+ a0, 0, o l}dV (6)
v

In the evaluation of the energy release rate, the integral given by
Eq. (6) reduces to the domain representation of the familiar

J-integral. A simple relationship between J(7) and G can be ob-

tained if it is assumed that G is constant along the segment L. It
follows directly from Eq. (4) that

JIC [—"— 7)

f Aa(m)dn
L

Finally, it is worth mentioning that the above derivation of the
EDI assumes the absence of crack face tractions. If present, an
extra term needs to be included in Eq. (6). For a more compre-
hensive derivation of the EDI the reader is referred to [11].

3 The Dual Boundary Element Method for
Thermoelasticity

Consider a linear-elastic, isotropic and homogeneous body oc-
cupying a domain ()(X) enclosed by a boundary I"(x) as illustrated
in Fig. 3(a). The two governing equations for steady-state ther-
moelasticity are the Laplace and the Navier equations which can
be written as follows:

0=0 (8)
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Fig. 3 (a) General cracked body with mechanical and thermal boundary conditions. (b) Crack discreti-

zation strategy.
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where 6 is the temperature and u; are the displacement compo-
nents, w is the shear modulus, v is the Poisson’s ratio, and « is the
coefficient of linear thermal expansion. Equations (8) and (9) are
solved subject to boundary conditions in temperatures 6, fluxes g,
displacements u, and tractions ¢ (see Fig. 3(a)).

The dual boundary integral equations on which the thermoelas-
tic formulation of the DBEM is based are the temperature and the
flux boundary integral equations for the solution of the Laplace
equation, and the displacement and the traction integral equations
for the solution of the Navier equation. The boundary integral
temperature equation relating the boundary temperature 6(x) with
the boundary fluxes g(x) can be written as

0 9)

c(x")0(x") —f q"(x",x)0(x)dl’ =—f 0" (x",x)g(x)dl"  (10)
r r

where c(x’) depends on the local geometry of the boundary sur-
face at the position of point x'; 6"(x',x) and ¢ (x",x) are the
temperature and flux fundamental solutions at a boundary point x
due to a unit source placed at location x’. Expressions for the
fundamental solutions #"(x’,x) and ¢"(x’,x) are given in the
Appendix.

Assuming continuity of both temperatures and fluxes at x" on a
smooth boundary, the boundary flux integral equation is obtained
by differentiating Eq. (10):

c(xgx") - ni(x’))( 6, (x' g (x)dl = = nx')
r

)( ¢; (x'.x) 6(x)dT (11)
r

where n;(x") denotes the component of the outward unit normal to
the boundary at x’. The symbols f and F represent integrals evalu-
ated in the Cauchy and Hadamard principal value sense, respec-
tively. Expressions for the kernels Hf*(x’,x) and qj*(x’,x) are
given in the Appendix.

If Egs. (10) and (11) are used for collocation on coincident
points on the crack surfaces (points x. and x! in Fig. 3(b)) the
temperature and flux boundary integral equations can be written
as

Journal of Applied Mechanics

l(9()@.’) + l19(x(.”) - f g (x, . x)0(x)dl = - f 0" (x,’ ,x)q(x)dl
2 2 r r

(12)

and

1 1 ek "
Sae) = Sale) =) Jf 6] (3 g x)dT
T

=— ni(xc")} q:*(xc",x) 0(x)dl’ (13)
r

where the normal vectors n;(x")=—n;(x") are assumed on the crack
surface. At the same time it is also assumed that the crack surfaces
at the position x," and x,” are always smooth. The later assump-
tion makes c(x’)=1/2 in Egs. (10) and (11).

Similarly to the boundary integral temperature equation, the
displacement boundary integral equation relates the displacements
u;(x) with the boundary tractions #;(x), temperatures 6(x), and
fluxes g(x):

Tij(x,vx)uj(x)dr_f Pi(x',x)0(x)dT
r

ey Jui(x") +f

r

=f Uy(x", 0)t(x)dl —f 0,(x',x)g(x)dl (14)
r r

where U;(x',x) and T;;(x",x) are the Kelvin traction and displace-
ment fundamental solutions for elasticity, and P;(x’,x) and
Q,(x",x) are the fundamental fields that account for the thermal
expansion (see the Appendix).

Assuming continuity of both strains and tractions at x’ on a
smooth boundary, the boundary traction integral equation is ob-
tained by differentiating Eq. (14) and by applying the material
constitutive relationships
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%ti(x’) + nj(x')% Tii(x" , x)ug(x)dl = nj(x'))( ﬁij(x’,x) O(x)dT’
r r

M(1+V)

-2 an;(x")6(x')

=nj(x’))( Upj(x" . x)t(x)dl"
r

—n_,-(X’)f Q;(x",x)gq(x)dl (15)
r

where the kernels Ty;(x.,x), Upjx..x), Pi(x/,x), and Q;(x;,x)
contain derivatives of the fundamental fields in Eq. (14) together
with elastic constants.

If, as it has been done with their thermal counterparts, Egs. (14)
and (15) are used for collocation on coincident points on the crack
surfaces, then the displacement and traction boundary integral
equations can be written as

lui(xc')+lu,-(xc")+ )( Ty(x’ ) (x)dTl — J P,(x',x) 6(x)dl
2 2 e .

=J Uij(X’,X)t_,-(x)dl“—f 0,(x" . x)g(x)dl (16)
r r

and

(x ") -

(x )+ nx")

)( Ty ) u(x)dT = nj(x,") )( Py(x." %) (x)dT
T T

m(l+v)

T an(x)6(x,")

= ’l_;(xc"))( Ukij(xc”’x)tk(x)dr - nj(xc”)f Q_ij(xc"’x)q(x)dr
r r

(17)

Following dell’Erba and Aliabadi [8], the general discretization
strategy can be summarized as follows (see Fig. 3(b)):

e Crack surfaces are discretized using eight-node discon-
tinuous quadratilateral elements in order to ensure the
continuity requirements of the field variables for the ex-
istence of the flux and traction equations.

e Continuous elements are used over the remaining model
boundary, except at the intersection of the crack with the
boundary surface. Edge discontinuous elements are em-
ployed in this region in order to avoid common nodes at
the intersection.

e The temperature integral equation (12) and the displace-
ment integral equation (16) are applied for collocation on
one of the crack surfaces.

e The flux integral equation (13) and the traction integral
equation (17) are applied for collocation on the opposite
crack surface.

e The temperature integral equation (10) and the displace-
ment integral equation (14) are applied for collocation on
all other surfaces.

4 Stresses, Strains, and Displacement and Tempera-
ture Derivatives

4.1 Internal Points. As it has been stated in Sec. 2, the com-
putation of the EDI requires the stress, strain, and temperature
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fields, oyj, &;;, and 6, and the displacement and temperature de-
rivatives, u; ; and 6, to be known within the integration volume
V. Although these quantities must be expressed in the local crack-
front coordinate system, in this work, and for the sake of simplic-
ity, they are first computed in the global system and then trans-
formed to the local crack-front coordinate system. Bearing this in
mind, and in order to integrate the computation of the EDI into the
DBEM formulation, derivatives of the displacements at internal
points X' are obtained from their boundary integral representa-
tions. Thus, the integral equations for the displacement and tem-
perature derivatives result from the analytical differentiation of
the internal counterparts of Egs. (10) and (14):

0,(X') = f g (X' ,x) 0(x)dT — f 0,” (X' ,x)g(x)dl  (18)
T T

Mi,k(X,) == f
r

+ f Ui (X', 2)1(x)dT — f 0::(X'x)g(x)dl’  (19)
T T

and

Ty (X', )u;(x)dT + f P (X' ,x) 6(x)dl

r

where the kernels q X “(X' %), 6 (X X), TiynX' %), Uy X' ,x),
,k(X ,x), and Q; (X" ,x) are the derivatives of the fundamental
solutions.
Once the displacement derivatives u;; are known, stresses o;
and strains ¢;
relationships:

ij

;j are computed using basic continuum mechanics

eij= 50w+ u;,) + @fs; (20)

afo;;

)

E v E
" o ——,,0: | ——— 21
U v<8’f 1—2p K ’f) 1-2v 1)

4.2 Boundary Points. Temperature and displacement deriva-
tives 6, and u; ; at boundary nodes could be obtained from Egs.
(18) and (19) in a similar way to their internal counterparts, by
taking the limit of Egs. (18) and (19) as point X’ moves to the
boundary, i.e., X' —x’. However, this procedure is computation-
ally expensive because of the occurrence of hypersingular inte-
grands. To avoid this difficulty, stresses and strains, as well as the
displacements and temperatures on the model surface, are evalu-
ated in this work from the boundary displacements, tractions, tem-
peratures, and fluxes following a procedure similar to that used in
FEM computations. Consider with this purpose a local Cartesian
system, (x7,x9,x9), such that xJ is the unit vector in the normal
direction to the boundary element and x(l) and xg are unit vectors
which define the local tangential plane. If O'?j and 1 are stresses
and tractions in the local system, stress components 1n the normal
direction can be written as

(22)

The remaining stress tensor components, o), ', and 03, can be
expressed in terms of t3 and the tangentlal strain tensor compo-
nents 8(1)1, 8(1)2, and 822, by eliminating .932 from the general ex-
pression of Hooke’s law. Thus,

0_ 0
o3=1;

0
o) =
1

1
~ V[VlgJ +2u()) + ved,) — (1 + v)ab]

1
0'(2)2= T V[Vlg + 2/1,(8(2)2+ Ve?l) -(1+v)ab]

0'(1)2 = 2,us(1)2 (23)

Strain components s?j can be obtained using Eq. (20), now applied
in the local coordinate system. It is worth nothing that displace-
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ment derivatives in Eq. (20) are initially evaluated in the intrinsic
element directions (£;,&,) and then converted to the local coordi-
nate system x° since, as usual in the BEM, boundary displace-
ments are approximated in terms of the piecewise parametric rep-
resentation (shape functions) of intrinsic coordinates:

8
u(é,6) = 2 ®n(§ls§2)u?

n=1

(24)

where ®" are the shape functions and u are the nodal values of
the displacements.
From (24) it follows

8
du; oP"
Ti o> (25)
051' n=1 (9§j

Finally, the derivatives of the displacements in the global system
are computed. Using chain differentiation, derivatives of the dis-
placements in the global system, u; ,,, can be related to the deriva-
tives of the displacements in the intrinsic boundary element direc-
tions, ﬂu,-/ﬁgj, as follows:

9E  x,, 9&
where dx,,/d¢; is the Jacobian matrix of the transformation. The
nine components of the displacement derivatives u;,, can be re-
trieved by solving for each case a system of equations constructed
using expressions (26). For further details the reader is referred to
the works by Cisilino et al. [12,13,15].

A similar procedure can be employed for the computation of the
temperature derivatives on the model boundary.

(26)

5 Boundary Element Implementation

5.1 Energy Domain Integral Evaluation. As it has been
stated in Sec. 2, Eq. (6) allows computation of the J-integral at
any position 7 on the crack front. This requires the evaluation of
a volume integral within domains that enclose a segment of the
crack front L.. A natural choice here is to make # coincident with
the element nodes on the crack front, while L. is taken as the
element or element sides at which points 7 lies (see Fig. 4).

The portion of the model domain in which the volume integrals
are evaluated is discretized using 20-node isoparametric (brick)
cells, over which stresses, strains, and displacements and tempera-
ture derivatives are approximated by products of the cell interpo-
lation functions, ¢/, and the nodal values of oy, &, u;;, and 6.
Nodal values of these variables are computed following the pro-
cedures introduced in Secs. 4.1 and 4.2 depending on whether the
node is internal or it lies on the model boundary. Volume discreti-
zation is designed to have a web-style geometry around the crack
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front, while the integration volumes are taken coincident with
different rings of cells. This is illustrated for an example in Fig. 5,
where one of the model faces has been removed to show the crack
and the integration domains.

As depicted in Fig. 4, three different cases need to be consid-
ered, depending on whether the node of interest M is in the middle
of an element side (mid-node), it is shared by two elements (cor-

e

crack face crack front

B integration
domains

Fig. 5 Boundary element discretization and integration cells
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ner node), or it is located coincident with the external surface
(surface node). If the node M is a mid-node or surface node, L,
(the segment of the crack front over which the J-integral is com-
puted) spans over one element, connecting nodes M—1, M, and
M+1 and nodes M—-2, M—1, and M, respectively. On the other
hand, if M is a corner node, L. spans over two elements, connect-
ing nodes from M -2 to M +2.

The function ¢ is used to specify the virtual crack extension.
For the sake of simplicity the direction of the crack extension is
taken constant along L. and coincident with the three orthogonal
local directions defined at 7 (see Fig. 1(a)). Consistent with the
isoparametric formulation, ¢ is given by

27)

20
Pr= E ‘I'i<P;<
i=1

where W' are the cell interpolation functions and xpi are the nodal
values for the ith node. From the definition of ¢ (see Eq. (5)),
(p;'(=0 if the ith node is on S, (the outer surface of the integration
domain) and ¢} # 0 for the nodes on L,. In particular ¢}=1 for the
node at 7 (nodes labeled M in Fig. 4). Different criteria for speci-
fying <p}'( for the other nodes L. and for the nodes inside the inte-
gration domain V are discussed in next section.
Following standard manipulations

(28)

(9‘1’0{,,[
224 :
i=1 i=1 n

where &, are the coordinates in the cell isoparametric space.
If Gaussian integration is used, the discretized form of Eq. (6)
is given by

- > 3

cells in V p=1

0 Jk —-w- 5ki)90k,i+a0" 9k¢k]det< oL )] wp
k

(29)

where m is the number of Gaussian points per cell and w), are the
weighting factors.

5.2 The ¢-Function. Since the virtual crack advance can
adopt any arbitrary shape, the only requirement for the function ¢
is to be sufficiently smooth within the integration volume V as the
evaluation of the EDI requires of its differentiation. Although Shih
et al. [11] have shown that the EDI is insensitive to the assumed
shape of the ¢ function, it has been found in a recent work by one
of the authors of this paper [15] that the shape of the function ¢
could be relevant for the performance of the EDI computations. In
this sense two different approaches for the shape of the function f
are investigated.

5.2.1 Bi-quadratic ¢. The bi-quadratic definition of ¢ has
been employed with excellent results in the computation of EDI in
previous works by Cisilino et al. [12-14]. Within this approach ¢
is defined to vary quadratically in the directions tangential and
normal to the crack front. Considering that # is at the middle of
the crack front segment L., and that r( is the radius of the inte-
gration domain, the function ¢ is written as:

== (25T [1- ()]

where r is the distance from the crack front in the xT—x; plane as
depicted in Fig. 1.

(30)

5.2.2 Optimized ¢. Saliva et al. [17] proposed an optimum
shape for the function ¢, which under certain considerations en-
sures the convergence of the EDI computations. The proposed
function is
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Fig. 6 Influence of parameters w”, w'?, and B on the shape of
function ¢ (one-dimensional case)

W

elx) = N

Wb+ 2wl - 2
i=1

(31)

where w”, w'P, and [ are parameters to be chosen, and z; are the
positions of the N points with null prescribed values of ¢. These
are given in this work by the N cell-nodes located on Sy, the outer
surface of the integration volume V.

Using parameters w”, w"”, and f, it is possible to control the
shape of ¢ and consequently the parts of the domain with the most
significant contribution to the integral in Eq. (6). In particular 8 is
associated with the smoothness of ¢. Greater values induce ap-
proximately null gradients around the crack front, where non-null
values of ¢ are prescribed. In contrast, the field undergoes abrupt
changes outside these regions. With w” and w"”, the region with
non-null gradients can be translated near the crack front or near
the boundary of the integration volume where null values of ¢ are
prescribed. Figure 6 illustrates the influence of the parameters as a
function of the normalized distance r/r.

It is important to mention here that the previous works which
made use of the optimized ¢, Refs. [15,17], were devoted to the
solution of linear elastic crack problems without the presence of
body loads. Under these circumstances, the second term of the
integral in Eq. (6), the term which accounts for body loads (ther-
mal loads in our case), vanishes. The key feature for the excellent
performance of the optimized ¢ for problems without body loads
can be attributed to the behavior of ¢ in the crack tip vicinity.
Note that for the optimized definition of ¢, the gradient ¢ is zero
in the vicinity of the crack front (see Fig. 6), resulting in that the
contribution to G of the crack front fields is not significant. As a
consequence, the zone of the integration domain with the lowest
accuracy in the results has a marginal contribution to the value of
G.

The formulation of the EDI for thermoelastic problems includes
a term to account for the thermal loads (see Eq. (6)). Note that
since this term is multiplied by ¢, the justification given in the
previous paragraph for the excellent performance of the optimized
¢ is not longer valid. However, and as it will be shown in the
following sections, the shape of ¢ still contributes to the accuracy
of the EDI computations.

6 Examples

6.1 Edge Crack in a Thin Panel Subjected to a Linear
Thermal Field. An example with two-dimensional characteristics
is proposed for the first example. It consists of an edge-cracked
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Fig. 7 Geometry, dimensions, and boundary conditions for
the edge and center cracked specimens

thin panel illustrated in Fig. 7(a). The crack length is a=10 mm,
and the specimen dimensions W=2a, L=W, and t=a/10. Material
properties are Young modulus E=1000 N/mm?, Poisson ratio »
=0.3, coefficient of thermal expansion a= 1073/°C, and thermal
conductivity A=1 W/°C-mm. The specimen is subjected to a lin-
ear temperature variation throughout the width W, with zero tem-
perature at mid-width, and temperatures fy=+100°C at the right
and left edges, respectively (see Fig. 7(a)). Crack surfaces are
isolated. Displacement boundary conditions at the panel ends are
illustrated in Fig. 7(a). Lateral faces of the specimen (z=+1/2) are
isolated and their normal displacements are restricted in order to
simulate the plane strain condition.

Model discretization follows the same pattern of that illustrated
in Fig. 5, but with only one element in the direction of the speci-
men thickness. Two meshes are considered: a “coarse” mesh con-
sisting of 242 elements and 899 nodes, and a “fine” mesh consist-
ing of 374 elements and 1319 nodes. Seven rings of internal cells
with radii ranging from 5% to 75% of the crack length are con-
structed around the crack tip for the J computations. For the so-
called coarse mesh, 60 cells and 526 nodes are used. On the other
hand, 116 cells and 958 nodes are used for the fine mesh. The
bi-quadratic definition of the function ¢ is used for the solution of
this problem.

Obtained results for the two discretizations are reported in
Tables 1 and 2 in terms of normalized mode-I stress intensity

factor K; Stress intensity factors were computed from J results
via the well-known expression K;=/J-E/(1 —17) and later nor-
malized using K,=K;/o4ma. The symbol oy=aE/(1-v)
stands for the exact solution for the thermal stress in the
y-direction at the right edge of an uncraked specimen. Results are
reported for crack front points located on the specimen surface
and on its mid-plane, and they are compared to the solution re-
ported by Wilson and Yu [18] who solved the problem using finite
elements. Differences between computed results and the reference
solution are denoted as A%.

Tables 1 and 2 show the improvement of the results with the
refinement of the model discretization. While for the coarse mesh
the differences between the computed results and the reference
value are close to 5%, they drop to less than 1% for the fine mesh.
The only exception is the results obtained for the smallest integra-
tion domain (r/a=0.05) which is defined using only one ring of
cells. It is also worth noting the excellent agreement between the
interior and surface values and the independence of the results
with the integration path. The overall performance of the imple-
mented algorithm is found to be very good, with an accuracy level
similar to other applications of the EDI [12-14]. As usual when
dealing with J-integral computations, the most accurate results are
obtained for integration paths defined over a relatively large por-
tion of the mesh.

6.2 Thin Panel With a Central Crack Subjected to a Ther-
mal Field. The second example consists in a center-cracked thin
panel in plane strain condition. The model geometry is the same
of the first example, but with the addition of the symmetry con-
ditions (both thermal and displacement) at x=0 (see Fig. 7(b)).
The thermal field is given as follows: temperature for crack sur-
faces are #y=0°C while the temperatures for all the surfaces per-
pendicular to the x-y plane (x=W, y=0 and y=2L) are 6,
=100°C. As in the previous example, the lateral faces of the
model are isolated and their normal displacements restricted in
order to simulate the plane strain condition.

Normalized stress intensity factor results K;:K 1/ aE(0,
—6,) v’W are reported in Table 3 and compared to those reported
by Murikami et al. [1]. All results were computed using the fine
discretization and the bi-quadratic ¢. As in the previous example
K results are reported for crack front points located on the speci-
men surface and on the mid-plane. Excellent agreement is ob-
tained between the computed and the reference results, with a
difference less than 2% for all the integration domains.

6.3 Penny-Shaped Crack in a Cylindrical Bar Subjected to
a Thermal Field. A bar of circular cross section containing an
embedded penny-shaped crack is analyzed in this example (see

Table 1 Normalized K results I(;:K,/u,,\f; for the edge crack in a thin panel (coarse discretization)

rla Average Ref. [18]
0.05 0.09 0.15 0.225 0.338 0.50 0.75
Surface 0.534 0.527 0.525 0.525 0.526 0.528 0.529 0.528 0.504
A% 5.95 4.56 4.17 4.17 4.37 4.76 4.96 4.71 ..
Interior 0.538 0.529 0.527 0.526 0.528 0.53 0.532 0.530 0.504
A% 6.75 4.96 4.56 4.37 4.76 5.16 5.56 5.16 ..
Table 2 Normalized K results I(;:K,/u,,\f;r for the edge crack in a thin panel (fine discretization)
rla Average Ref. [18]
0.05 0.09 0.15 0.225 0.338 0.50 0.75
Surface 0.482 0.497 0.501 0.501 0.502 0.502 0.502 0.498 0.504
A% -4.37 -1.39 -0.60 -0.60 -0.40 —-0.40 —-0.40 -1.16 e
Interior 0.489 0.5 0.502 0.502 0.503 0.503 0.503 0.500 0.504
A% -2.98 -0.79 -0.40 -0.40 -0.20 -0.20 -0.20 -0.74 ‘e
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Table 3 Normalized K results K;= K,/ «E(0; - 6,) VW for the edge crack in a thin panel (coarse discretization)

rla Average Ref. [1]
0.05 0.09 0.15 0.225 0.338 0.50 0.75
Surface 0.497 0.489 0.487 0.486 0.486 0.486 0.496 0.490 0.495
A% 0.40 -1.21 -1.62 -1.82 —-1.82 -1.82 0.20 -1.10
Interior 0.497 0.489 0.487 0.486 0.486 0.486 0.496 0.490 0.495
A% 0.40 -1.21 -1.62 -1.82 -1.82 -1.82 0.20 -1.10

Fig. 8(a)). The crack of radius a=1 mm is located in the center of
the bar, in a plane perpendicular to the axis of the bar. In order to
assimilate the problem to that of a penny-shaped crack embedded
in an infinite body, the dimensions R/a=10 and H/R=6 are cho-
sen. The temperature of the crack surfaces is set 6,=0°C while
for all the surfaces of the cylinder #;=100°C. The boundary ele-
ment mesh consists of 1434 nodes and 224 elements. The crack is
discretized using 152 elements. Three rings of cells with radii
r/a=0.2, 0.35, and 0.50 are used for the J computations. With this
purpose 832 cells are employed. Material properties are adopted
the same as the previous examples. The bar is allowed to expand
freely. -

Normalized K results KfzKI/(aEﬂo\e’aﬂ'/(l —v)) calculated
along the crack front using the bi-quadratic ¢ are reported in Table
4. Also included in Table 4 is the analytical solution due to Das
[19] for comparison. Since the K result is constant along the crack
front, results in Table 4 are reported only for a few positions.
Table 4 shows that the EDI results deviate less than 3% from the
reference solution, which is considered acceptable for the mesh
used. No attempt was made to refine the mesh.

6.4 Circular Bar With an Annular Crack Subjected to a
Thermal Field. The problem of an annular crack in a circular bar
is considered in this example (see Fig. 8(b)). The crack is situated
at the bar mid-length, on a plane perpendicular to its axis. Model
dimensions are crack depth a=20 mm, cylinder radius R/a=2.5,
and cylinder height H/R=12. The thermal field is given by tem-
peratures 6y=—50°C on the crack surfaces and 6;=0°C on the
top and the bottom ends of the cylinder. The lateral surface of the
cylinder is isolated. The boundary element discretization consists
of 1970 nodes and 328 elements, 192 of which are used for the
crack faces. Three rings of cells with radii /a=0.2, 0.35, and 0.50
are used for the J computations. Axial displacements are restricted
for the top and bottom ends of the cylinder.

The picture in Fig. 8(c) illustrates boundary element mesh in

(@

the deformed configuration. Some of the elements in the lateral
surface of the cylinder have been removed in order to see the
crack discretization. Obtained results using the bi-quadratic ¢ are
presented in Table 5 in terms of the normalized stress intensity
factors K, =K,/ (@Efy\am) for a number of positions along the
crack front. Although there is not reference solution available for
comparison, the independence of the results with the integration
path can be verified. Thus, the last column in Table 5 reports the
maximum deviation of the results with respect to the average
value. Maximum deviation is always less than 1%.

6.5 Edge Crack in a Thick Panel Subjected to a Linear
Thermal Field. This example consists of a problem with three-
dimensional characteristics for which the variation of J along the
crack front is studied. The problem loading and geometry are the
same as that of the example studied in Sec. 6.1, but considering
now a panel of length 2L=6W and thickness t=3a. Since the
problem is symmetric with respect to the plane z=—1/2 (see Fig.
7(a)), only one half of its geometry is modeled. The devised
boundary element discretization consists of 292 elements and
1351 nodes. Six elements are placed along the crack front and a
total of 35 elements are used in the crack discretization. Crack
front elements are graded towards the free surface, the smallest
one being equal to #/32 (see Fig. 5). Four rings of cells with radii
r/a=0.2, 0.35, 0.5, and 0.75 are accommodated around the crack
front for J computations. With this purpose 480 cells and 2302
nodes are employed.

J-integral values are computed using the two approaches intro-
duced in Sec. 5 for the specification of ¢. Afterwards, K-values
are calculated from J results using K ,iy"J -E/(1-1%), and later

normalized by doing Kf:K,/ aE6,\W. Results for the bi-
quadratic definition of ¢ are plotted in Fig. 9(a), while results
obtained using optimized ¢ are plotted in Fig. 9(b). Following
Ortiz and Cisilino [14] the values of the parameters for the opti-

@ (©

Fig. 8 Geometry, dimensions, crack discretization, and boundary condi-
tions for the penny-shaped and annular cracks
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Table 4 Normalized K results I(;:K,/(aan\e’mﬁ -v)) for the
penny-shaped crack in a cylindrical bar

127 rla Average  Ref. [19] A%
0.20 0.35 0.50
0.000 0.9580 09730  0.9779 0.9696 0.9418 2.95
0.125 0.9573 09720 0.9762 0.9685 0.9418 2.83
0.250 0.9575  0.9721 0.9764 0.9687 0.9418 2.85
0.375 0.9575 0.9720 0.9763 0.9686 0.9418 2.84
0.500 0.9576 09722 09764 0.9687 0.9418 2.86
0.625 0.9577 09722 09764 0.9688 0.9418 2.86
0.750 0.9576  0.9721 0.9764 0.9687 0.9418 2.85
0.875 0.9576 09721 0.9764 0.9687 0.9418 2.85

mized ¢ are chosen as w’=6, w*’=1, and B=6. Error bars in the
plots indicate the maximum deviation for the results obtained us-
ing the different integration domains. Reference values in the
plots are those reported by dell’Erba et al. [8] using COD com-
putations from BEM results. In the region near the symmetry
plane, z/¢t=0, a plane strain condition is expected, and thus the
result by Wilson and Yu [18] for two-dimensional analysis is also
included for comparison.

Both approaches for ¢ provide results within a 4% error with
respect to the plane strain solution at the position of the symmetry
plane, z/¢t=0. For positions along the crack front located in the
interior of the specimen, results computed using the bi-quadratic
¢ show a more stable and robust behavior than those obtained
using the optimized ¢. On the other hand, the optimized ¢ results
are more reliable for the computations in the region of the crack
front near to the free surface. Note that in such a case K values
computed using the optimized ¢ are almost independent of the
integration domains, while those computed using the optimized ¢
exhibit a relatively large dispersion. Finally, it is worth mention-
ing that results obtained using both approaches for ¢ are always
higher than those reported by dell’Erba et al. [8] and closer to the
plane strain solution. Both sets of results, those computed in this
work and those reported by dell’Erba et al. [8], tend to the same
value at the free surface.

6.6 Thick Panel With a Central Crack Subjected to Ther-
mal Field. The last example consists of a thick panel with a
central crack. Model geometry and boundary conditions are the
same as that illustrated in Fig. 8(b) and used in the example in
Sec. 6.2, but with the specimen the thickness increased to t=3a.
Following the previous example, the J-integral and their corre-
sponding K-values are computed along the crack front. Model
discretization is the same as used in the previous example. Appro-
priate displacement boundary conditions are set in order to ac-
count for the symmetry conditions. -

Normalized K-results K;:KI/ aE(0,—60,)\W are reported in
Figs. 10(a) and 10(b) for the bi-quadratic and optimized ¢, re-
spectively. Parameters for the optimized ¢ are chosen as w’=6,

Table 5 Normalized K results K)=K/(aEfy/alm) for the
penny-shaped crack in a cylinderical bar

¢/2m  r/la  Average Maximum deviation %
0.20 0.35 0.50

0,000 0,164 0,166 0,166 0,166 0,618
0,104 0,166 0,168 0,168 0,167 0,605
0,208 0,165 0,167 0,167 0,166 0,872
0313 0,166 0,168 0,168 0,167 0,604
0417 0,165 0,167 0,167 0,166 0,872
0,521 0,166 0,168 0,168 0,167 0,605
0,625 0,165 0,167 0,167 0,166 0,872
0,729 0,166 0,168 0,168 0,167 0,605
0,833 0,165 0,167 0,167 0,166 0,872
0,938 0,166 0,168 0,168 0,167 0,604
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Fig. 9 Normalized mode | stress intensity factor along the
crack front for the edge crack in a thick panel: (a) results using
bi-quadratic ¢ and (b) results using optimized ¢

w™=1, and B=6. As for the previous example, error bars indicate
the maximum deviation in the results with respect to the integra-
tion domains.

Computed results show the same general behavior of the previ-
ous example: both approaches for ¢ provide results very close to
the plane strain solution for the symmetry plane (position z/t=0),
the bi-quadratic ¢ behaves more stable and robust than the opti-
mized ¢ in the interior of the specimen, and the optimized ¢
results are more appropriate for the computations on the free sur-
face. At this point it is worth noting that although both approaches
result in the same K-value at the free surface (see Fig. 10), those
computed using the bi-quadratic ¢ possess nearly 20% dispersion,
while for the optimized ¢ the dispersion is only 3%.

7 Conclusions

A three-dimensional dual boundary element method formula-
tion of the energy domain integral for the numerical analysis of
thermoelastic fracture problems has been presented in this paper.
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Fig. 10 Normalized mode | stress intensity factor along the
crack front for the central crack in a thick panel: (a) results
using bi-quadratic ¢ and (b) results using optimized ¢

The proposed formulation has been implemented as a post-
processing technique, and so it can be applied to the results from
a particular model at a later stage. The implementation takes ad-
vantage of the efficiency of the boundary integral equations to
directly obtain the required stress, strains, temperatures, and dis-
placement and temperature derivatives. A number of examples
have been solved to demonstrate the efficiency and accuracy of
the proposed formulation. Obtained results are accurate and in
good agreement with other results reported in the literature.

Special emphasis has been put on the appropriate selection of
the auxiliary function ¢ present in the domain integral formula-
tion. In this sense two approaches have been considered: a bi-
quadratic variation and an optimized approach proposed in the
paper by Saliva et al. [17].

It has been found that the function ¢ constitutes a key feature
for the performance of the proposed methodology. Obtained re-
sults show that the optimized ¢ performs markedly better for the
point located at the intersection of the crack front with the free
surface, allowing obtaining reliable J results where the bi-

968 / Vol. 73, NOVEMBER 2006

quadratic ¢ fails. On the other hand, for crack front positions
located in the interior of the specimen both approaches allow
computing accurate J results, however the bi-quadratic ¢ presents
a more robust behavior. These behaviors for the two definitions of
¢ are the same as those reported in a recent paper by one of the
authors of this work [15] when dealing with the application of the
EDI to linear elastic crack problems without the presence of body
loads.
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Appendix

In this appendix the fundamental solutions for the implementa-
tion of the thermoelastic formulation of the dual boundary ele-
ment method are provided. In what follows the symbol r stands

for the distance from the field point xto the source point x’:
r(x',x) =[x = x'| (A1)

The notation r indicates the derivative at the source point, i.e.,

ar
—=- A2
ox, Fk (A2)
The fundamental solutions in the temperature Eq. (10) are
. -1
0(x',x)=— (A3)
4r
* " k1%
' X)=A— A4
¢ () =AY (A4)

The fundamental solutions for the flux Eq. (11) can be found after
the differentiation of the solutions (A3) and (A4) to yield

67 (x' x) = —7; (A5)

! 41

q; (x'.x)=——=Q@r;rm—ny) (A6)

413

The fundamental solutions in the displacement Eq. (14) are given
by

, -1 ar
T(x',x) = m{—[(l —2v) 68, + 3r,r ]

on
- (1=2v)(n;r;—nyr ) (A7)
Uy(x',x) = m{@ —4v) 8+ 1,1 (A8)
Pix',x)= %(n - %r,i) (A9)
0i(x',x) = %r!i (A10)

The fundamental solutions in the traction equation (15) are ob-
tained by material constitutive relationships. This procedure re-
sults in
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+ (1 =20)@Bnyr 1 ; + ny 5+ n;6)— (1 = 4v)m 5

(A11)
, 1
Uyij(x',x) = m[(l =20)(Syr j+ S i = Syr g) + 311 i1 4]
(A12)
— ap(l +v) 8;j
Py(x' ) = 4877(1 o7 nkr,k|: . _”2,; =3rrj|+nrj+nr;
(A13)
5 ap(l +v) ( 3 )
X' x)=4d——\rr, - — Al4
0i(x"2) 8m(1-v)r il 1-2v ( )
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A Two-Dimensional Linear
Assumed Strain Triangular
Element for Finite Deformation
Analysis

An assumed strain approach for a linear triangular element able to handle finite defor-
mation problems is presented in this paper. The element is based on a total Lagrangian
Jormulation and its geometry is defined by three nodes with only translational degrees of
freedom. The strains are computed from the metric tensor, which is interpolated linearly
from the values obtained at the mid-side points of the element. The evaluation of the
gradient at each side of the triangle is made resorting to the geometry of the adjacent
elements, leading to a four element patch. The approach is then nonconforming, never-
theless the element passes the patch test. To deal with plasticity at finite deformations a
logarithmic stress-strain pair is used where an additive decomposition of elastic and
plastic strains is adopted. A hyper-elastic model for the elastic linear stress-strain rela-
tion and an isotropic quadratic yield function (Mises) for the plastic part are considered.
The element has been implemented in two finite element codes: an implicit static/dynamic
program for moderately non-linear problems and an explicit dynamic code for problems
with strong nonlinearities. Several examples are shown to assess the behavior of the
present element in linear plane stress states and non-linear plane strain states as well as
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in axi-symmetric problems. [DOI: 10.1115/1.2173674]

1 Introduction

For practical industrial applications in the finite strain range,
low order elements are almost exclusively used, specially in prob-
lems including contact. Also elements including only physical de-
grees of freedom are normally preferred. For two-dimensional
problems these two aspects restrict the choice to linear triangles
and bilinear quadrilaterals.

If only elements with translational degrees of freedom are con-
sidered, the linear triangle (constant strain triangle with six de-
grees of freedom) is not a good choice because it requires very
fine meshes to obtain results of engineering precision, and also
because it locks for quasi-incompressible problems, e.g., material
models including J, plasticity or rubber-like materials in plane
strain.

From the point of view of the present techniques for finite ele-
ment development, the bilinear quadrilateral shows much more
possibilities. Important efforts have been made in the past
30 years to obtain efficient and robust quadrilaterals which do not
lock in the incompressible limit, or have a good performance in
bending-dominated problems even with coarse meshes. Different
practical approaches and their theoretical basis have been pro-
posed in this direction, from the addition of incompatible modes
to improving bending behavior or selective integration of the
volumetric response to avoid locking, to the present more refined
techniques of assumed strain and enhanced strain finite elements
(see, for example, Refs. [1,2] and references listed therein).

From the point of view of industrial applications, the use of
triangular elements is more convenient. This is mainly associated
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with the fact that mesh generators using triangles are more effi-
cient and robust than those using quadrilaterals. This facility is
especially important in processes in which large distortions of the
original mesh are expected leading unavoidably to remeshing
and/or to adaptive refinement.

These reasons have led to the developments of triangles with
degrees of freedom that are not strictly displacements, including
mixed or hybrid elements on one side and elements with drilling
rotations or displacement derivatives on the other side. The extra
degrees of freedom in mixed/hybrid (assumed stress) approaches
have no associated mass, requiring special time integration tech-
niques [3] when explicit integrators are used. This aspect is im-
portant in problems including strong nonlinearities, in which ex-
plicit integrators are more robust and preferred. Besides, the
standard algorithmic framework for non-linear solid mechanics is
typically strain driven and, from a practical perspective, algo-
rithms for assumed stress elements are more involved. Elements
with drilling freedoms are less common, and have been restricted
to plane stress problems [4]. More recently an F-bar method
(volumetric strain averaging) [5] that alleviates volumetric lock-
ing and an application of sub-grid scales in mixed elements [6]
that avoids pressure oscillations were proposed, but none of them
improve the poor in-plane behavior of the constant strain triangle.

In this paper a triangular element defined by only three nodes
and with only translational degrees of freedom is presented. For
the computation of the strains a four element patch including the
three adjacent elements is used. This approach has a geometric
definition similar to that used in Ref. [7] for the evaluation of the
curvatures in a shell element and shares some aspects with the
subdivision approach recently proposed for surfaces [8]. The pro-
posed approach linearly interpolates the metric tensor evaluated at
the midpoint of each side. The present development is intended to
deal with elastic-plastic models at finite strains.

The outline of the paper is as follows. In Sec. 2, the essential
governing equations for non-linear solid mechanics relevant to
this work are presented. The next two sections are devoted to the
finite element approximation: in Sec. 3 the original approach to
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the evaluation of the deformation gradient and the metric tensor is
presented, while in Sec. 4 the stiffness matrix necessary for im-
plicit algorithms is derived. Section 5 describes the element per-
formance in linear plane stress problems, and Sec. 6 shows pre-
liminary results for plane strain and axisymmetric problems in the
non-linear range. Finally, some conclusions are drawn in Sec. 7.

2 Solid Kinematics

The most relevant aspects associated with the kinematic re-
sponse of solids are initially presented. More detailed develop-
ments can be found in the literature devoted to the field [9].

Consider a solid with reference configuration Q° in R® at the
initial time 7=0. Let us then denote with X e Q° the position
vector of a material point that transforms to a point x at a time ¢,
both referred to a fixed set of axis.

At each point X the deformation gradient is defined as

ox ox ox
FX)=|—,—0,— |=lajaa 1
() [%%%] [ay a; 2] (1)
The definition of the Lagrangian tensor C=F’F=U? (with U
the right stretch tensor, and C the right Cauchy—Green tensor,
respectively) allows the introduction of the covariant metric tensor
at each point

CaB = (Uz)aﬁ =a,- aB = aaB (2)
One advantage of the Lagrangian strains is that they are re-

ferred to material fibers leading to a simple handling of aniso-
tropic materials. With U? it is possible to define different Lagrang-

ian strain measures. With this objective the spectral
decomposition is performed as
3

U= 2 Nl ® T, (3)

a=1
where A\, and r, are the eigenvalues and eigenvectors, respec-
tively, of the right stretch tensor U.

To deal with plasticity at finite deformations an adequate stress-
strain pair must be used. Here a logarithmic (Hencky) strain mea-
sure is adopted that, restricted to two-dimensional problems, can
be explicitly expressed as

€11 €71 0 3
E,=|ep en 0 [=2 m(\)r,@r, 4)
0 0 €33 a=l

The conjugated stress measure T is used consistently. Besides
this, in the framework of a total Lagrangian formulation, it may be
convenient to work with the second Piola—Kirchhoff stress tensor
(S) for the residual force evaluation. The relation between the
stress T and the stress S results from the definition of the rotated
tensors

T, = RZTRL &)
S, =RISR, (6)

where R; is the material rotation tensor associated with the prin-
cipal stretches (eigenvectors of U)

R;=[r; 1, 13] (7)
The relations between these rotated stress measures are

CARS AN ®)
[SL]aﬁ = M[TL]M} )
SN

They allow to compute
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S=R;S;R} (10)

With the previous definitions, the weak form of the equilibrium
equations in the reference configuration can be written as

Sl = J [6Eq..:S1dQ° + 81, =0 (11)
Q0
where Eg; are the Green—Lagrange strains conjugated to S
: 1 1
EGLzzE(Ai—l)raéarazz(Uz—l) (12)

a=1

Note that the stress-strain pair S—Eg; is used only to write the
equilibrium equations in the reference configuration. Alterna-
tively, an equivalent formulation to Eq. (11) using the spatial
Kirchhoff stress tensor 7 on the actual configuration can be devel-
oped.

The constitutive model used in the numerical experiments be-
low corresponds to an elastic-plastic material associated with a
ductile metal. For this kind of material, where elastic strains are
small and a logarithmic strain measure is used, it seems reason-
able to adopt an additive decomposition of elastic and plastic
strains E{ =E;,—E} , where plastic strains may be associated with
a plastic deformation gradient F? through

Ef = In(FP"F7)"? (13)

usually associated with a stress free intermediate configuration.
For moderately large shear plastic strains, the results obtained
with the additive formulation are similar to those obtained with
the multiplicative decomposition of F. See Ref. [10] for a com-
parison of results for both approaches. An associative Mises yield
function (J,) with non-linear isotropic hardening is considered.
Also an anisotropic Hill-type function can be easily defined since
the elastic strains are computed on the material axis. The elastic-
plastic constitutive equations are integrated using a standard re-
turn mapping algorithm.

For the elastic part, a linear relation (constant) between stresses
and elastic strains is also adopted. The constitutive relation is split
into its deviatoric and volumetric components and in the numeri-
cal implementation the volumetric part is averaged at the element
center to avoid volumetric locking.

3 Mapping Functions and Gradient Evaluation

In this approach we start from a three-node triangular finite
element mesh of the domain. But in contrast with standard finite
elements, for the evaluation of the deformations at an element, we
resort also to the geometry of the adjacent elements to the triangle
being considered (see Fig. 1(a)). A quadratic geometry is thus
defined by the position of the six nodes

6 6
X= > NX' x=> N (14)
I=1 I=1

In the parametric space (master element) we keep the vertex
positions, nodes 1-3, of the central or main triangle (standard
linear triangle) which occupy the positions (see Fig. 1(b)).

(€.7)=(0,0. (&,7)=(1,0), (£.7)=(0.1)
while the three extra nodes forming the patch, denoted as 4-6,
occupy the positions

. 7)=(1, (E.7)=1LD, (&79)=01-1).
The following set of shape functions can be defined over this
quadratic non-standard six node triangle (with {=1-¢-17)

N'=(+énp N=é+ql N'=n+(é

vt wte-n w=Zo-n 0y

2
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Fig. 1 Patch of elements (a) in spatial coordinates, (b) in natu-
ral coordinates

The aim of this mapping is the computation of the metric tensor
at selected points in the central element to generate an assumed
strain approach. For a linear interpolation in local natural coordi-
nates three values are needed. The points used for evaluation are
located at the middle of each side of the reference triangle (M in
Fig. 1(a)). They are indicated as G, G, and G; in Fig. 1(b). This
choice has the following properties:

e The gradient computed at each mid-side point depends ex-
clusively on the positions of the nodes associated with the
two elements adjacent to the side. This can be immediately
checked by differentiating the shape functions and evaluat-
ing at the middle of each side.

*  When the deformation gradients are computed at the com-
mon side of two neighbor triangles, the same four nodes will
be used. Thus, at each side of the mesh, a unique deforma-
tion gradient exists.

The deformation gradient is then determined by the coordinates
of a patch of four elements, which includes the element under
consideration (M in Fig. 1(a)) as the central one. Note that the
present approach is nonconforming because the quadratic geom-
etry computed from two adjacent triangles is different along the
common side.

Once the deformation gradient has been defined the derivation
is standard, and some details are given in the sequel. We will
denote by t; and t, the two orthogonal unit vectors in a local
Cartesian system conveniently selected (e.g., the orthotropic prin-
cipal directions of the constitutive material). The natural deriva-
tives of the reference coordinates allow to compute the Jacobian
matrix of the isoparametric mapping J and the Cartesian deriva-
tives of the shape functions N{Né‘ With them the deformation
gradient at the deformed configuration (respect to the original Car-
tesian system) can be computed as

[Xrlaxr2]=[xrgvxr77]~]_l (16)
and the (in-plane) covariant metric tensor
a;; a X, X, X,-X
C=|: 11 12:|=|: 71 1 r1 12:| (17)
dy dnn XXy X2°X)2

and finally any in-plane desired Lagrangian strain measure. For
example, the Green—Lagrange strain tensor

972 / Vol. 73, NOVEMBER 2006

X x,-1  x,,-%X,, llay-1 ap
EgL=7 ==
20 x0X,1 X Xp—1 ] 2] ay  ap-1
(18)

An element that has a side along the boundary does not have an
adjacent element on this side. In this case the deformation gradi-
ent at this side is computed as the gradient of the central element
using the standard linear interpolation. Once the metric tensor (C;)
is computed at each mid-side point i, the element can be classified
as an assumed strain element if the metric tensor is interpolated
as a function of the computed values at the sides. This allows to
associate a theoretical basis to the present approach.

CEn)=>1-20)C +(1-2H)Cy+(1-29)C;  (19)

4 Stiffness Matrix

The derivative of the weak form (Eq. (11)) is needed for most
of the implicit predictor-corrector algorithms. As usual, for non-
linear problems, the material and geometric parts are considered
separately. The material part is almost standard and does not offer
difficulties, it is the result of the integral

Su’K Au=su’ f B'DBdAAu (20)

A

where matrix B results from the evaluation of the variation of the
Green—Lagrange strain tensor (Eq. (18)). In the numerical imple-
mentation, adequate changes must be introduced for elements on
the boundary. Matrix D is the tangent elasticity matrix or, in
elastic-plastic problems, the tangent/algorithmic constitutive ma-
trix Dep,.

The geometric part turns out from

J
Su"KsAu = f %(éEéLS)AudA (21)

A

which can be obtained by adding the contributions from the three
mid-side points (written in matrix form):

3 4 4
1 S, S
5uTKGAu=§EEE 6u’J [N, N{z][ " 12]
A
®

K=1 I=1 J=1 S21 S22

N{l J
x| i |dAdu (22)

12

where index K=1,3 is the side and N'® are the shape functions
restricted to the four contributing nodes at each point (1,/=1,4).

In the numerical comparisons we denote by TR3 the present
element when three points are used to integrate the deviatoric
forces and corresponding stiffness matrix. And by TR1 when only
one integration point is used, equivalent to averaging the metric
tensors computed at each side. The latter is the usual case because
it needs less storage for internal variables; it is more competitive
for explicit codes and does not have spurious modes.

For the TR1 version the computational cost is slightly above the
standard constant strain triangle (CST). Two aspects must be con-
sidered: (a) the evaluation of the internal forces, (b) the computa-
tions associated to the stiffness matrix. For codes with explicit
integration of the momentum equations only the former is con-
cerned, while for implicit integrators the latter is the most rel-
evant. For the evaluation of the internal forces the differences with
the CST amount to the computation of the average metric tensor
(or the deformation gradient) than can be made quite efficiently.
The same also applies to the stiffness matrix evaluation. It must be
noted that also a slightly wider bandwidth will be obtained leading
to higher CPU times to solve the equations systems.
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Fig. 2 Membrane patch test

5 Linear Numerical Examples

In this section and the next, a summary of the numerical ex-
periments performed to assess the behavior of this element is pre-
sented. In this section linear problems in plane stress state are
considered. An implicit static/dynamic program for moderately
non-linear simulations developed by the author is used. For com-
parisons, the results obtained with other elements are included,
namely: the constant strain triangle (CST), the linear strain tri-
angle (LST) and three three-node triangles (ALL-31, BER-85 and
CF-OPT) with three degrees of freedom per node (both displace-
ments and the drilling rotation) obtained with different formula-
tions as reported in Ref. [4]. With ALL-31 we denote the element
developed by Allman [11] integrated with three inner points; with
BER-85 we denote the element developed by Bergan [12] using
the free formulation and with CF-OPT we denote the element
developed by Felippa and Militello based on the ANDES scheme
[13] optimized to reproduce exactly constant bending states.

5.1 Membrane Patch Test. As the present approach is non-
conforming, one of main aspects to be considered is the satisfac-
tion of the patch test. To assess this a square domain of unit side
subjected to nodal forces associated with a uniform unit stress
state (both Cartesian directions and shear) have been used. Two
possible patches of elements are shown in Fig. 2. In the first patch,
the loads necessary to obtain a uniform stress state Sy,=S,,=S,,
=1 are shown. In the second patch, only the loads corresponding
to a uniform traction in the direction x are depicted. For both
meshes unitary stresses are obtained at all elements, using one or
three integration points.

Two very important things may be noted in this simple ex-
ample. First, in the second case, note that the nodal forces are the
loads associated with the linear triangle and not to the quadratic
one. This has important implications in problems including con-
tact, where the use of the standard LST implies non-uniform
equivalent nodal forces for a uniform pressure leading to the well-
known problems of quadratic elements in contact simulations.
Second, note that the element patches used for gradient computa-
tions at each element are quite distorted. In the first mesh the
element patch used to compute strains at element * is shaded as an
example. A LST element defined with the same six points will
show a very strong sensitivity to such distortion leading to unpre-
dictable results.

5.2 Short Cantilever Under Uniform Shear. This example
(see Fig. 3), taken from Ref. [4], is used to assess the behavior and

Y
}
X 12 C |p
B 48 —m

Fig. 3 Shear loaded short cantilever: no contraction allowed
at the root. E=30,000, »=0.25, h=1.
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Fig. 4 Tip deflections for short cantilever under end load. (a)
y=1, (b) y=2, (¢c) y=4.

convergence properties of elements under bending and shear when
the element aspect ratio is increased. Shear load is parabolically
distributed according to beam theory. All displacements are con-
strained at the root, not allowing Poisson’s contraction. A numeri-
cally converged solution of the deflection at point C of ¢
=0.35601 is used for normalization. Mesh units are formed by
four half-thickness overlaid triangles to avoid orientation influ-
ence. Along direction y (beam height) 2, 4, 8, 16, and 32 mesh
units are considered while along direction x mesh is defined by
element aspect ratio values y=1, 2, and 4.

The results for the vertical displacements of point C are plotted
in Figs. 4(a)-4(c) for the three element aspect ratios and for all the
elements described above. In all the cases the best results are
obtained with the linear strain triangle while the constant strain
triangle is notoriously overstiff. The performance of elements with
drilling freedom deteriorates as the aspect ratio increases, spe-
cially Allman’s triangle. Present element fully integrated (TR3)
converges rapidly and is less sensitive to aspect ratio than ele-
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Fig. 5 Cook’s membrane problem. Geometry and load.

ments with drilling freedoms. Present element with only one inte-
gration point (TR1) is slightly more flexible but converges to the
correct solution.

5.3 Cook’s Membrane Problem. One of the main targets of
this proposal is to obtain a membrane approach with a behavior
similar to the linear strain triangle in arbitrary domains. Such
capacity is studied in this example [14], corresponding to a prob-
lem with an important amount of shear energy involved, intended
also to assess the ability of the element to distort. Figure 5 shows
the geometry of a tapered panel clamped on one side and with a
uniformly distributed shear load on the opposite side. In Fig. 6 the
vertical displacement of point C (midpoint of the loaded side) for
the uniformly refined meshes considered are plotted as a function
of the total number of degrees of freedom.

For the present element with three integration points, it can be
seen that for the coarsest mesh (two linear elements), the mea-
sured displacement is slightly superior than the constant strain
triangle; but when the mesh is refined, the values computed rap-
idly catch up with those obtained with the linear strain triangle.
For the elements with drilling freedoms, the trends of the previous
example are reverted. The more general Allman’s element has a
better performance than the other two (optimized for uniform
bending) which give similar values and converge slower. The
present element with only one integration point (TR1) shows ex-
cellent predictions for coarse meshes and fast convergence prop-
erties.

6 Nonlinear Numerical Examples

In this second part of the numerical experiments, examples in
the geometric and material non-linear range are discussed. Due to
the characteristics of the problems modeled, including strong non-
linearities and contact with friction, a program with explicit inte-
gration of the governing equations was used [15]. This program

€ 20 Pid
: L7 at
18 x
8 i L - —-»-- CST
S 16 / —a— LST
2 i ——— TR-3
D14 L’ = =% == TR-1
R —<— ALL3I
12 L7 --—g—— CF-OPT
Xd ——&5—- BER-85
10 ! ! L I | L
10' 10° 10°
NDOFs

Fig. 6 Cook’s membrane problem. Vertical deflections of point
C (plane stress).
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Fig. 7 Cook’s problem in plane strain. Convergence of finite
element solutions. (a) quasi-incompressible finite elasticity. (b)
Finite Strain J, flow theory.

allows to obtain pseudo-static solutions using dynamic relaxation.
The problems analyzed in this second part are in plane strain or
axisymmetric states. Special emphasis is placed in detecting if the
element is capable of handling elastic-plastic problems with iso-
choric plastic flow or quasi-incompressible elastic problems.

6.1 Cook’s Problem in Plane Strain. The same geometry
considered in Sec. 5.3 is used, but here in a state of plane strain.
Two different materials are considered. First, a quasi-
incompressible linear elastic material defined by a shear modulus
m#=80.1938 GPa and three possible values of the bulk modulus
K,=401.0x10° GPa, Kz=40.1X10°GPa and K =4.01
X 103 GPa in correspondence with three values of the Poisson
ratio »=0.4999, 0.4990, and 0.4900, respectively. Second, an
elastic-plastic material defined by the elastic constants u
=80.1938 GPa and K=164.21 GPa and J, plasticity with non-
linear hardening defined by the yield stress o,(e”)=0.450

+0.12924¢7+(0.715-0.450)(1 —¢~1693") [GPa]. The applied load
is 100 kN for the elastic case, and 5 kN in the elastic-plastic case.

Figure 7 plots the vertical displacement of the upper corner
versus the number of elements per side of the mesh. Figure 7(a)
corresponds to the quasi-incompressible elastic case using one
integration point for present element. Results are shown for the
three bulk modulus considered, denoted as TR-A, TR-B, and
TR-C. Curve TR-A (Poisson’s ratio »=0.4999) shows clearly a
slow convergence. For a Poisson’s ratio of ¥=0.4990 convergence
is reasonably good, while for the lowest considered value of v
=0.4900 convergence is very good, similar to that obtained in the
plane stress case. For comparative purposes, results for the highest
Poisson’s ratio obtained with two four node quadrilaterals are in-
cluded. Q1P0 [16] is a mixed element equivalent to integrating the
volumetric part with one point and the deviatoric part with four
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Fig. 8 Stretching of circular sheet with a hemispherical punch

points; Q1EA is an enhanced strain element [17]. Both quadrilat-
erals show a better performance than the proposed triangle (TR1)
for this type of quasi-incompressible elastic problem.

Figure 7(b) corresponds to the elastic-plastic material. Results
for the two versions (one and three integration points) of the
present element and the two quadrilaterals mentioned in the pre-
vious paragraph are included. In this case, TR3 shows a stiffer
behavior than quadrilaterals, but there is no locking. While the
element version TR1 converges faster than both quadrilaterals
used for comparison.

6.2 Stretching of a Circular Sheet With a Hemispherical
Punch. The last example considered is an axisymmetric problem
with moderately large strains. This benchmark was proposed in
Ref. [18] and has been widely used to test two-dimensional solid
elements. The simple geometry of this test is shown in Fig. 8. The
sheet thickness is 1 mm and the material is defined by the elastic
constants £=69.004 GPa and »=0.3, and J, plasticity with an
isotropic hardening law ¢, =0.589(107*+¢7)%2!® GPa. Contact be-
tween the tools and the sheet is modeled using penalization and
the friction coefficient adopted is ©=0.3. A uniform mesh of 28
elements in direction r and four elements in the thickness was
used (28 X4 X2 TR1 elements).

Figure 9(a) plots the force on the punch versus the punch travel
along the process. These values are in agreement with most of the
simulations where solid elements (as opposite to shell elements)
have been used, as they can deal with local effects associated with
shear distortion due to the small radius of the die and to the
frictional contact with the tools [16]. Figure 9(b) shows the thick-
ness along the radius for different punch travels, and Fig. 9(c) the
effective plastic strain on the middle surface of the sheet for dif-
ferent punch travels. These results agree quite well with most of
the data published for this benchmark including solid [16] and
shell elements [7].

7 Conclusions

A triangular finite element for the simulation of two-
dimensional solids has been presented. The geometry is defined
by three nodes and only translational degrees of freedom are used,
which makes the element convenient for implementation in codes
with explicit integration of the governing equations for problems
including contact and adaptive remeshing. The element is noncon-
forming but satisfies the patch test and the numerical test com-
puted did not show problems.

In uniform bending plane stress states, the element displays a
reasonable behavior. For more general problems including a mas-
sive discretization, the element shows a performance similar to the
linear strain element. Thus the element turns out to be an excellent
candidate for the membrane part of a shell element [19], specially
if it is oriented to sheet metal forming, where the membrane be-
havior is of utmost importance and requires a detailed discretiza-
tion of the domain.
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Fig.9 Stretching of circular sheet with a hemispherical punch.
(a) Punch force vs punch travel. (b) Thickness ratio along the
radius for different punch travels. (¢) Equivalent plastic strain
along the radius for different punch travels.

For plane strain and axisymmetric states with finite strains in
the plastic range, the element performance is very good, similar to
the enhanced strain quadrilaterals. For quasi-incompressible elas-
tic problems the element is rather stiff for Poisson’s ratio greater
than 0.4999 but is quite good for Poisson’s ratio below 0.4990

A more detailed assessment of the element must be performed.
In particular the behavior in problems including very large strains
(exceeding 1) and the convergence properties in complex domains
and meshes where large gradients of the element size exist.
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Microstructural Simulation of
Solidification Process of
Spheroidal-Graphite Cast Iron

This paper presents a new micro-macro approach for the thermo-microstructural behav-
ior of the solidification process of an eutectic ductile cast iron. The thermal balance is
written at a macroscopic level and can take into account both the structural component
being cast and its mold. Models of nucleation and growth represent the evolution of the
microstructure, following a multinodular solidification theory with independent nucle-

ation of graphite and austenite and a dendritic growth of austenite. The resulting formu-
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1 Introduction

This paper presents a simulation of the solidification process of
eutectic spheroidal-graphite (SG) cast iron, by means of a coupled
macro-microstructural ~ formulation. This is a thermal-
microstructural formulation, in which two different but interde-
pendent problems are coupled: the macroscopic problem is gov-
erned by the heat flow equation, while the microscopic problem is
governed by the microstructure formation during solidification.
Both models are coupled and lead to a nonlinear problem.

SG cast iron, also known as ductile cast iron, nodular iron, or
ductile iron, plays a key role in metallurgical industries and in
some engineering processes. Because of its advantageous me-
chanical properties, SG cast iron has substituted cast steel and
forged steel in a number of applications. The new feature is that
the spherical structure of graphite can be obtained as a result of
the solidification process instead of the long and expensive ther-
mal treatments that are needed following the solidification of
white cast iron. However, the mechanisms involved in the forma-
tion of SG cast iron are not simple, and there have been many
attempts to explain this process.

The main difficulties to build a satisfactory model are associ-
ated to a lack of empirical evidence about what exactly occurs
during solidification. The importance of simulation in this field of
science and engineering can not be overstated. There are tremen-
dous difficulties in the experimental work, which would be the
subject of a paper in itself, mainly because one needs to investi-
gate a process without full access to it, and also because any
measuring device interferes with the very process that it is trying
to investigate. There is another phase change that occurs in solid
state during cooling; this is present in the experimental results but
would be complex to include as part of the same solidification
process modeled here.

Simulation by itself, on the other hand, is not sufficient because
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lation is solved using a finite element discretization of the macro domain, in which the
evolution of the microstructure is taken into account at the Gauss integration points. The
quantitative agreement between experimental and computational values in terms of cool-
ing curves is acceptable. [DOI: 10.1115/1.2189876]

there is a strong need to have evidence regarding the evolution of
the microstructure. Thus, it seems clear that further advances in
this field require both experimental evidence and computational
simulation of the process, in which the latter may help to under-
stand the consequences of the assumptions made in the physical
theories.

Early work performed to model solidification phenomena has
been restricted to the macroscopical level [1], which is governed
by the energy equation

pcT + Pprc =V(kVT) (1)

where p is the density, c is the specific heat, k is conductivity, 7T is
temperature, L is the specific latent heat associated to phase
change, f,. is the phase change function (0<f, <1), V is the
gradient operator, and the dot on top of a variable indicates time
derivative. This is a nonlinear problem, on account of the changes
that take place in the material parameters with the temperature
evolution. The solution has been carried out using a space discreti-
zation with finite elements and a time discretization using finite
differences (see, for example, Ref. [1]).

Microscopic models formulated in the past to deal with solidi-
fication in metals do not use an explicit phase change function but
used its time variation as a function of the time variation of dif-
ferent independent state variables. For equiaxial solidification
problems, it is possible to write

fo=ANN + Agi )

where fs is the solid fraction, N is the density of nuclei, r is the
average grain size, and Ay and Ay are nucleation and grain growth
functions that depend on the specific kinetics model.

For the solidification process, the phase change function is the
liquid fraction, i.e., f,.=1—fs. In a macroscopic analysis, the
phase change f,,. is an explicit function of 7, so that temperature
becomes the only independent variable in the problem. But such
an analysis cannot predict microstructural properties for the dif-
ferent phases that develop with solidification, including grain size,
eutectic or dendritic spacing, type of microstructure, and percent-
ages of each component. All those aspects can only be taken into
account by employing a microstructural model.

At present, most authors agree that graphite nucleates directly
in the liquid with spherical shape. There are two main theories to
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explain other details of the solidification behavior of SG cast iron.
In the uninodular theory [2-9], the growth of graphite nodules
occurs by carbon depositing directly from the liquid or by diffu-
sion through a layer of solid austenite that surrounds a nodule
(both graphite and austenite having spherical shape) or by a com-
bination of both mechanisms. In the multinodular theory [10-18],
on the other hand, austenite nucleates independently and grows in
dendritic form, while graphite grows with spherical shape [13].
Initially, graphite grows in contact with liquid, but as it gains
contact with austenite then the spherical nodules are surrounded
by austenite. Once graphite is wrapped by austenite, the graphite
spheres grow by diffusion of carbon, from the liquid, through the
austenite. Simulations employing the multinodular theory have
not yet been developed, with some exceptions of extremely sim-
plified models [13,21,22].

This paper presents a numerical model for the simulation of
equiaxial solidification of eutectic SG cast iron according to mul-
tinodular assumptions. Details of the microstructural model are
given in Sec. 2, and results are shown in Sec. 3.

2 Microstructural Model of Solidification

2.1 Main Assumption at Microstructural Level. This model
assumes the independent nucleation of austenite as a function of
the cooling rate but in an instantaneous way. Continuous nucle-
ation of graphite is assumed as a function of the liquid treatment
and of undercooling. Austenite has dendritic growth, whereas
graphite grows with spherical shape, but a distinction is made in
the latter between growth in the interdendritic liquid and growth
in the intergranular liquid. Mass balance of carbon is satisfied at
all times. Moreover, a sequential computation of austenite and
graphite evolutions is assumed, i.e., both evolutions are coupled,
but to simplify the computations they are evaluated separately in a
staggered form.

2.2 Carbon Concentration at Equilibrium in the
Interfaces. To evaluate carbon concentrations at the equilibrium
state of each phase at each temperature, the influence of silicon is
taken into account in the equilibrium diagram Fe—C-Si. Following
Heine [23], a two-dimensional equilibrium diagram is used, in
which the liquidus and solidus lines and eutectic temperature are
defined by functions that depend on the silicon and carbon con-
tents. The carbon concentrations at equilibrium are given by

ry_ L e -
C —973(1569 T —24.325i)

1
= m(1528.4 —T-1325i)

l/gr=

: 1(T— 129.78i + 503.2) (3)
where C"7 is the concentration of the liquid in contact with aus-
tenite, C”! is the concentration of austenite in contact with liquid,
and C"#" is the concentration of liquid in contact with graphite, all
at temperature 7 and at equilibrium, and Si is the silicon content.
All the concentrations are expressed in weight percent (wt. %)
while the temperature in degrees celsius).

Silicon concentration is computed using Scheil law, in which a
uniform concentration of silicon is assumed in the liquid and zero
diffusion of such element is taken for the solid. This law has also
been applied in Refs. [13,22].

2.3 Dendritic Equiaxial Growth. Several researchers have
studied dendritic growth at a microstructural level [24-26]. Fol-
lowing Rappaz and Thévoz [24,25], the equiaxial dendritic growth
of individual grains can be substituted by a spherical grain with a
given fraction of the solid volume. The main assumptions made
by Rappaz are as follows:
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Fig. 1 (a) Schematic representation of equiaxial dendrite
grain, (b) spherical solute concentration, (¢) schematic repre-
sentation of equiaxial dendrite grain and spherical graphite
nodules, and (d) spherical solute concentration. Spherical
symmetry is assumed in this work.

e The development of the microstructure is controlled by dif-
fusion of solute.

e Temperature is uniform in a grain, so that the concentration
of liquid in contact with the dendritic surface is also uniform
and is equal to the concentration indicated by the line of
liquidus in the corresponding equilibrium diagram at the
considered temperature.

¢ Interdendritic liquid has a uniform composition.

* No diffusion of solute occurs in solid.

e Spherical diffusion of solute occurs in the intergranular
liquid.

e The velocity of growth at the tips of the main dendrites is
given by the kinetic equation governing the growth of iso-
lated dendrites.

Figure 1(a) shows the equiaxial dendritic growth of an assumed
spherical grain. The total grain radius Ry, is computed at the mo-
ment of instantaneous nucleation. The radius R, corresponds to a
spherical surface at the tip of the dendrites and grows during the
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Fig. 2 (a) Component fractions of an equiaxial dendritic grain
in the solidification of one phase and (b) Component fractions
of an equiaxial dendritic grain in the solidification of an eutectic
SG iron

solidification until it reaches the value Ry. Three spherical sym-
metric zones are identified in Fig. 1(b), in order to produce a
simplified description of the solute concentration. Zone 1, defined
as a sphere with radius R,, shows the evolution of the solute
contents in solid and covers the volumetric fraction corresponding
to the total solid volume of the grain. Zone 2 covers a total volu-
metric fraction of (4/ 37T(R;Z—R’31)) and shows a uniform distribu-
tion of solute in the interdendritic liquid. Zone 3 covers
4/ 37T(R";——RZ)), with a variation of solute concentration in the
intergranular zone. Changes are necessary in Figs. 1(a) and 1(b) if
the solidification of an eutectic is analyzed, in which case a simul-
taneous dendritic solidification of austenite and the spherical so-
lidification of the graphite nodules occurs, because changes occur
in the solid fractions and solute concentrations in each zone; see
Figs. 1(c) and 1(d).

2.4 Evaluation of Volumetric Fractions in the Eutectic
Grain. The external rectangle in Fig. 2 represents the total grain
volume, which is divided into three zones. Figure 2(a) shows the
components of the whole volume of the grain for the case where
only austenite solidification occurs. Figure 2(b) shows the compo-
nents of the whole volume of the grain for the case where both
dendritic austenite and graphite nodules distributed in the total
grain volume solidify. In Fig. 2(b), zone 1 has austenite and
graphite surrounded by austenite; zone 2 is formed by interden-
dritic liquid and graphite, and zone 3 has intergranular liquid and
graphite. To compute those fractions, the following relations are
used:

R
==ty
(RI-R) ., .
fzz R3 1’2+f:g}%
. (R=R)
== S )
T

where f¥" is the volumetric fraction of zone n, and
Ry
_ S ml _ ozl gl
fy_ R3 - gr_.fZ “Jgr (5)
T
where f, is the total volumetric fraction for the austenite. Further-
more,
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where f r, 2 and f‘3 are the total volumetric fraction of graphite
in zone lready surrounded by austenite), zone 2 (interden-

dritic), and zone 3 (integranular), NZ1 N;%,N” are the number of
graphite nodules in zones 1, 2, ancf 3, per unit volume of total
grain, N, gzrl N, gz,z,N 3 are the number of graphite nodules in zones
1, 2, and 3, and R R, are the radius of graphite nodules for
zones 1, 2, and 3. The subscript J denotes the nodule group asso-
ciated to a specific nucleation time and & stands for the total num-
ber of nodule groups.
Finally, the solid fraction may be written as

fo=tyt Fat g+ fa=f+fa+fy (7)
During the numerical analysis of solidification, a sequential
computation of austenite and graphite evolutions is assumed and,
therefore, some volumetric fractions need to be computed several
times at each time step in order to properly take into account the
coupling effects existing in the model. For example, the graphite
fractions in each zone f z,’; have variations, in a given time step,
with the nucleation and growth of nodules and with the increase in
the radius R, and R,.

2.5 Nucleation and Grain Size in Eutectic Austenite.
Nucleation of eutectic austenite is assumed to occur as soon as the
eutectic temperature Ty is reached. There is experimental evi-
dence [19,20] that a larger number of grains is obtained as a
consequence of increasing cooling rate. The opposite occurs for
lower cooling rates. This is due to the fact that, in most cases, an
increase of the cooling rates leads to larger undercoolings. How-
ever, an instantaneous nucleation is assumed in the present model
for austenite and, as an approximation, a linear function is pro-
posed as

dT
N,=A— 8
= (8)

where N, is the density of austenite grains; A is a parameter that
depends on the characteristics of liquid such as composition, su-
perheating, and holding time. For simplicity, the final shape of the
grains in equiaxial solidification is assumed to be spherical with
radius Ry.

Based on the number of austenite grains that nucleate per unit
volume, the total radius Ry is computed at each point of the spatial
discretization, and it is kept constant during the whole analysis. At
each representative volume, just one grain size is found, with a

radius given by
3
[ 3
Ry= 9
" Naan, ©)

2.6 Nucleation of Graphite Nodules. Graphite nucleation is
modeled as a continuous process, and occurs when:
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Fig. 3 (a) Carbon concentration considering the solute layer
thickness and (b) carbon concentration without consideration
of the solute layer

* the temperature is below the eutectic temperature, and is
lower than the lowest temperature reached since the begin-
ning of the solidification process.

* the liquid fraction is not yet equal to zero.

A group of nodules nucleates with a given density, N, ;, where

index j identifies the nucleation group considered. Some of the

nodules nucleate in the interdendritic liquid in zone 2 (R,<r
<R,), and some in the intergranular liquid in zone 3 (r>R,).

Each time a group of nodules nucleates, its distribution is estab-

lished between the two zones.

The nucleation of graphite is modeled in each zone by an ex-

ponential law, which takes the form [13]

grj [bATexp( )(1 i f fz3)Al‘]
J

N3 = [bATexp( )(1 — fg,)At] (10)
where N is the nodule density (nodules per unit volume) that
nucleate during the time interval A¢, AT is the undercooling, and
b and c are parameters that depend on the composition and liquid
treatment. The nucleation remains very small until a “critical un-
dercooling,” which depends on the value of the interfacial energy
between the nucleating phase and the substrate, is reached [13].
For larger undercoolings the nucleation rate markedly increases.
The critical undercooling is directly proportional to the value of
the parameter ¢. Equation (10) takes into account the decrease in
the liquid fraction.

2.7 Austenite Growth. In a situation in which just austenite
grows, the variation of concentration of carbon would be like in
Fig. 1(b); however, for solidification of the eutectic, the graphite
nodules are assumed distributed in the volume of the grain, then
the variation of carbon would look like in Fig. 1(c) and Fig. 3(a).
It is seen that there are discontinuities due to the presence of
nodules with carbon contents of 100%. An even more simplified
variation of concentration is shown in Fig. 3(b), for a uniform
concentration of carbon Cyyeryge in all zone 3. In the present
model, the concentration Cyyepage is Obtained through a mass bal-
ance carried out after the growth computation of R, and the graph-
ite nodules located in zone 3. Once the values of Cwmge, clv, s,
and R, are known, the solute mass balance equation leads to the
following expression of Co,

CZ/75(6R2 + 4R 5+ 52) + Caverage(_ R;'+ R;)
28 = 4R3 + 6R35+ 4R,8 + & — 4R}

(11)
The growth of the tips of the main dendrites (R,) is controlled by

undercooling (ct 7—ng); furthermore, an increase of the total
austenite fraction, which occurs through the growth produced on
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cr’
' \

cr
"

R.R, Ry Ry Ry

Fig. 4 Changes in the carbon concentration in a time step

R, is obtained by a mass balance.

2.7.1 Kinetics of Growth at The Tip of a Dendrite. The growth
of dendrite tips is assumed to be controlled by the diffusion of
solute, and the influence of the thermal undercooling is neglected
because the temperature is assumed constant for the whole grain.
The velocity of growth of the tip of a dendrite is taken from Ref.
[27], which was previously employed by several authors [24-26],
in the form

d_Rg. DmCO

<C[/‘y_ Cocg>2
dr ~ 7T(k-1) Cy

where D is the coefficient of diffusion of carbon in liquid, m is the
slope of the austenite liquidus T, I" is the Gibbs-Thompson co-
efficient, Cy is the initial concentration of carbon, and k is the
coefficient that relates the concentrations of solid and liquid in
equilibrium (distribution or partition coefficient). C., is the con-
centration of carbon in intergranular liquid away from the limit
zone & (equivalent boundary layer).

(12)

2.7.2  Growth of R, Due to Solidification of Austenite. Figure 4
shows the variation of carbon concentration at a time step, but to
simplify the drawing, the concentrations of nodules are not repre-
sented. Concentrations and radius are given for time #, while those
with a dash, R, R,, CY", and C"7", are associated to time ¢+ At.

Assuming that there is no carbon diffusion through the spheri-
cal surface of radius Ry at the limit of a grain, the variation of
solute distribution during solidification should be such that the
contents of carbon in the grain is constant, so that the sum of the
variation in the carbon content in the three zones becomes zero.

The variation of the mass carbon in zone 1 for time step Af,
assuming constant concentration in the solid in [R,,R,] and equal
to kC"?, plus carbon variations in zones 2 and 3 at the same time
step, is equal to zero. The mass balance equation is simplified by
assuming a uniform (non-discrete) distribution of the volume of
graphite nodules in the volume of zones 2 and 3. To achieve this,
the model uses Uy, (the carbon volume of the nodules per unit
volume of the zone), which is computed as

Uw:_wE Nuz_g_z }_c‘g_

with n=2,3
=1 & Vzn f e

(13)

This U;’; plays a role in the mass balance equation for each zone.
The mass balance equation reads
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If the same nucleation law is used for zones 2 and 3, and the
growth of the radius of nodules in those zones is computed as an
average, then U“2 UZ3 Therefore, it is possible to show that in-
tegration of the above equation leads to an expression for R/ in the
form

dc ,
3 [3DR; d—‘ At+C"™(1= k)R, +(C" - C'"R;
rlr
R = £

n

(1= k) + (" =)

(15)

The gradient in R,, which is required to compute R) is here
given by Zener’s approximation [25-27]

dc c-c,, 2D
- =—% where &=— (16)
dr R, 0 dR,

2 dt

2.8 Distribution of Already Existing Nodules. The radius R,
and R, change, so that some nodules that initially belonged to
zone 2 may later belong to zone 1, while nodules in zone 3 will be
later in zone 2. Note that the model assumes that the nodules do
not move and the change in zones is only due to a modification of
the boundaries given by radius R, and R,.

The variations in the densities of nodules in each zone for each
group j in a given time step are

4
o =7l(R,+AR,)* - R}]

1 grj
ANE"/ fzz VT
z3 72
AN = F—w[(R +AR,) - ‘]— = SW[(R,1+AR,L)’
-R] (/Vy

Journal of Applied Mechanics

40 mm

- casting
<—— Sand mould

Thermocouple 1 Thermocouple 2

350 mm

¢ 140 mm

Fig. 5 Geometry of the coupon and the mold

Nz3 7T[(R +AR,) ]
ANg,; =~ _gﬁl (17)
f Vr

With a growth in radius R ,,, some of the nodules that were
before in zone 2 with radius R“ r migrate to zone 1, in which the
radius of the nodules of group jis R!

z1
radius R, ;
satisfied

or - When this occurs, new

are computed, so that mass balance of carbon is

fRzl —

NoR + N AF'R,,
\/ grj rgri 87 (18)

N+ Ny
2.9 Growth of Graphite Nodules in Liquid. The growth of
austenite and graphite occurs at the same time; however, the com-
putations in this step-by-step analysis are carried out by increasing
austenite with a constant value in the number and size of graphite
nodules, and vice versa. Graphite nodules grow in both the inter-
dendritic and the intergranular liquids, but with different rates
because zones 2 and 3 have different carbon concentrations,
named C”” and C.q respectively. The growth of graphite nodules
due to diffusion is modeled here using Zener’s equation for a
spherical isolated particle in a matrix with low saturation
[2,13,28]. For nodules in zone 2, Zener’s equation yields

dR - Dpl(cl/'y _ Cl/gr)

= - (19)
dt 2Rgrpgr(cgr - Cl/é )
For zone 3, it becomes
dR,, C.., — C8"
g Dpy( g ) (20)

dt 2Rgrpgr(cgr - Cl/& r)

As soon as zone 3 vanishes, i.e., the main dendrite tips reach
radius Ry, Eq. (19) is multiplied by (1-fy) to account for the
event that some nodules are partially covered by austenite.

3 Numerical Results and Comparison to Other Tech-
niques

Some examples are presented in this section to illustrate the
behavior of the solidification of a SG cast iron. First, a cylindrical
coupon cast in a sand mold is studied (see Fig. 5), for which
experimental results were obtained in Ref. [13]. A refractory ma-
terial is placed at the bottom of the coupon, and the top part is also
isolated once casting is complete. The material properties, given
in Table 1, correspond to ductile cast iron at the eutectic compo-
sition with Si=2.4 wt. %. The ambient temperature and the initial
temperature of the mold is 25 °C. The initial temperature of the
alloy is 1245 °C.
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Table 1

Material properties, taken from [13]

Ductile Iron Properties

Thermal conductivity [W/m°CJ:
Density (kg/m?)
Specific heat (kJ/kg°C)

Latent heat (kJ/kg)

Diffusion coefficient of C (m?/s)
Nucleation parameters

solid=30, mushy=25, liquid=30
7000

cp=0.61+1.214X10"*X T for 777°C<T<1130°C

cp=0.915 for T>1130°C
185

in liquid=5.0X 107! in austenite=9.0 X 107!
b=9.0x 10" ¢=250 A=1.0x 10%

Sand Properties

Thermal conductivity (W/m°C)
Density (kg/m?)
Specific heat (kJ/kgK)

1.1
1500

cp=0.782+5.71 X 107* X T—1.88 X 107X T2 for T<846 K

cp=1.00+1.35X107*X T for T>846 K

Because of the isolation at both ends, together with the long
axial dimension of the coupon, heat flow at the center occurs in
radial direction and the problem is modeled considering a two-
dimensional strip at the center. A finite element analysis was car-
ried out using a special purpose program with 90 plane equiaxial
elements with four nodes and Lagrangian interpolation.

Computational and experimental results of cooling curves are
shown in Fig. 6, with good agreement not only at the center but
also at the surface of the coupon. The evolution of liquid, auste-
nite and graphite fractions at an intermediate location (half way
between the central axis and the surface) has been plotted in Fig.
7. The velocity of growth of austenite increases as the nucleation
of the graphite nodules becomes more intense due to the mass
balance established in the model. The growth of the radius Ry, R,
and R, at an intermediate point is shown in Fig. 8. It can be seen
that the tips of the main dendrites reach the edge of the grain;
thus, that for most of the solidification time there are only two
zones.

An important aspect of the solution is the distribution of graph-
ite volume with identification of the radius of the nodules; this is
shown in Fig. 9 for a point which is close to the surface of the
coupon. Most of the total graphite volume is concentrated in nod-
ules with a radius of ~15 um. The density of nodules computed
at a point located at half the radius from the central axis is 1.18
X 103, whereas the value recorded experimentally in Ref. [13] is
1.10X 10%3.

4 Conclusions

This paper presented a new microstructural model to simulate
the equiaxial solidification of an eutectic SG cast iron. This model
can be coupled to the macro level, in which the heat flow problem

1,25E+03

1,20E+03
center (cal.)
1156403 ® edge (exp.)
1,10E+03 A center (exp.)
1,05E+03
edge (cal.)
1,00E+03

temperature [°C]

9,50E+02

9,00E+02

8,50E+02

8,00E+02

time [s]

Fig. 6 Computational and experimental cooling curves at the
casting edge and at the casting center
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is solved. The specific model is based on a plurinodular theory of
solidification, in which there is independent nucleation of austen-
ite and graphite. The problem includes both the spherical nodules
of graphite and the dendritic growth of austenite, and the mass
balance of solute (carbon) is satisfied at all steps of the process.
From the present model it is possible to obtain microstructural
features arising from the solidification process, such as the density
and distribution of the size of graphite nodules, and this has a
direct consequence on the mechanical properties of the material.
Furthermore, such predictions allow the identification of the grain
size of austenite, which influences the mechanical properties

09 - _fi
08
0,7 -
06 -
05
0.4
03
0.2

0,1 fgr
T el N

0 50 100 150 200 250

time [s]

volume fractions

Fig. 7 Evolution of liquid (f), austenite (fy), and graphite (f,,)
fractions at an intermediate location
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Fig. 8 Growth of the radii Ry, Ry, and R,
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Fig. 9 Graphite volume distribution computed near the cast-
ing edge

through the distribution of microsegregation and its incidence on
the phase changes that occur after solidification, leading to the
final microstructure of the material. Those aspects serve to high-
light the importance of an adequate modeling of solidification of
austenite as the basis for simulations carried out during the eutec-
toid transformation.

The model implemented can serve to investigate changes in the
laws of nucleation and growth, as well as the parameters of the
microstructure; as such, this may help in the identification of ad-
equate properties before testing is carried out to produce final
technological decisions.
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Evolution of the Upper Crustal
Deformation in Subduction Zones

The uplift and evolution of a noncollisional orogen developed along a subduction zone,
such as the Andean system, is a direct consequence of the interrelation between plate
tectonic stresses and erosion. Tectonic stresses are related to the convergence velocity
and thermal state, among other causes. In this paper, a new model designed to investigate
the evolution of the topography and the upper crustal deformation of noncollisional
orogens in a subduction zone produced by the oceanic crust being subducted is presented.

The mechanical behavior of the crust was modeled by means of finite elements methods
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1 Objectives

The modeling of the processes related to crustal deformation,
due to compression or extension, has been approached in a num-
ber of different ways in the last decade. On one side, models that
analyze small scale crustal deformation have reached accurate and
satisfactory results using mainly formal numerical methods [1].
On the other side, the development of numerical models to study
the large-scale crustal deformation is continuously evolving be-
cause of the multiplicity of processes that take part in the whole
evolution of the deformation. Some of these are models based in
geometrical properties, considering isotropic rocks [2], whereas
others try to represent more complicated mechanical and rheologi-
cal properties [3-5]. In the last few years, many authors [6-8]
have used the method proposed by Fullsack [9] for the study of
orogens formed by the collision of two plates. In this work, a
model for noncollisional formed mountain belts (orogens) and
well suited for subduction zones is developed. (see Fig. 1)

2 Geological Concepts

In the last few years, several authors have discussed the impor-
tance of the different factors that control the uplift of an orogen
like the Andes. Some of them suggest that the absolute motion and
direction of the plate movement and its convergence velocity are
the main causes for the development of an orogen [10], while
others relate it to the amount of sediments in the trench [11] or the
absolute velocity of the plates [12,13]. Anyway, there is actually
some consensus on the idea that, in an orogen like the Andes, all
these factors can contribute to the generation of stresses along the
plate interface. This fact controls the development of the general
tectonics of an Andean orogen [11]. The deformation will also be
strongly conditioned by the position of the magmatic arc, which
implies a higher thermal flux in the zone.

In some subduction systems, depending on the coupling be-
tween both plates and its features, friction may imply huge quan-
tities of material removal from the overriding plate. This process
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to solve Stokes equations for a strain-rate-dependent viscoplastic rheology. The model
takes into account erosion effects using interface-tracking methods to assign fictitious
properties to nonmaterial elements. [DOI: 10.1115/1.2204962]

is known as crustal (or subduction) erosion and has been proved
to be one of the main causes of the magmatic arc shifting. The
reason is that if the angle of subduction is kept unchanged, the
magmatic arc should always be at the same distance from the
trench. But, as the trench has moved into the overriding plate,
because of the material eroded, the magmatic arc shall migrate in
order to keep the distance [14].

At the same time that tectonic stresses deform the upper crust
and the orogen develops, erosion can affect the surface, resulting
in deeper rocks being exhumated. One of the main causes of ero-
sion is precipitation. It is common that when the orogen reaches a
certain yield altitude, precipitation concentrates on the side where
the humid winds come from [15]. When the difference in precipi-
tation is considerable, the phenomenon is known as orographic
rain shadow.

3 Numeric Model

The model presented in this paper consists of three different
parts. First, a tectonic model was developed to predict the upper
(continental) crustal deformation as a result of the forces applied
by the oceanic slab being subducted. In second place, a surface
and subduction erosion model was implemented. Finally, an iso-
static compensation model takes into account the flexural behavior
of the lithosphere. All these models are coupled at each time step
modifying the deformation produced by the compression.

3.1 Tectonic Model. Although the upper crust is made of
rigid solid material, large-scale long-term deformation (tens of
thousands of years) is usually modeled by means of fluid dynam-
ics equations [9]. In this case, Stokes equations were employed
because the process is considered quasi-static and inertial terms
are negligible [16]. The dimensionless Reynolds number was con-
sidered to be zero in order to model the fluid as laminar and
without turbulence. The problem was posed as two-dimensional
(2D) and in a plane-strain state. The transect (vertical section) was
designed with a 700 km long bidimensional mesh consisting of
1881 nodes (Fig. 2).

Finite elements used are Q,—P; type [17], capable of biqua-
dratic interpolation for velocities (nine nodes) and lineal interpo-
lation for pressures (three nodes). It has been proved that this
element satisfies the inf-sup condition [18,19], the basic math-
ematical criterion that determines whether a finite element dis-
cretization is stable and convergent, and avoids side-effects as the
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Ocean Land

Fig. 1

Schematic graphic of a subduction zone

checkerboard distribution of pressure [19].

3.1.1 Finite Elements Resolution. The Cauchy stress tensor
(o) is defined as

where S is the deviatoric stress tensor, P is the trace of the stress
tensor or hydrostatic component, and & is the Kronecker & func-
tion. The governing differential equations are the incompressibil-
ity equation (Eq. (2)) and the equilibrium equation (Eq. (3))

14 Vv 11

Including the constitutive relation (Eq. (4)), it can be rewritten
it as

1 T 1
J 587(1— gmmr) 2#(1— gmmr> SeIV+ J oe'mP 9V
v

\4

=fﬁ5u,.av+f fiovall )
14 I

where m=[1,1,0,1].
After discretization and some algebraic simplification,

1 T 1
BT<I——mmT> 2,u<1——mmT)B¢9V U+ | BTmHpP oV
\%4 3 3 \%4
=[f HbaV+f HSMH}
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is derived, where H is the velocity shape functions matrix, B is the
velocity derivative functions matrix, and Hp is the pressure shape
functions matrix.

Finally, the following system of equations:

Vu=0 (2) K, U+K,P=R (10)
Vo+pg=0 (3) is obtained, where
The constitutive relation is 1 T 1
. Kuuzf BT(I——mmT) 2,(1,(]——mmT)Bz9V (11)
Sij=2pe;; (4) v 3 3
Here v is the velocity of the fluid, p is the density, g is the
gravity acceleration, u is viscosity, and € is the strain rate. The
latter is defined as K,,= f B'mHp 9V (12)
14
. 1 (9U,' v;
o= 5| 4 2 (5)
T 20 0x; dx;
where v; is the velocity of the fluid in the i direction. R= J HboV+ f H5t 911 (13)
Starting with the virtual work principle 14 1
) Rewriting Eq. (2),
14 14 I}
- . . L . O6P(Vv) dV=0 (14)
and splitting strain rate in a deviatoric and a volumetric part v
. . e
gj=e;+ ?Uf"i.f ™) .
f 6PTHYe, dV =0 (15)
Equation (1) and (7) can be replaced into Eq. (6) namely, v
40
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Fig. 3 Temperature distribution at the beginning of simulation

SPT JHWB&V U=0 (16)
\4

where

f Hym'B V=K, (17)
\4

Finally, the system given in Egs. (10) and (16) can be expressed

as
K Ky [[U] |R
K, o [[P] |0

3.1.2 Rheology: Dependence and Numerical Resolution. Tem-
perature in a subduction zone is highly variable from the spatial
point of view but quite stable through time, especially when con-
sidering large-scale modeling. As the viscosity of a rock (w) is
related to the temperature to which it is exposed, the variation in
viscosity can be of several orders of magnitude between minimum
and maximum values. Penalization techniques were avoided be-
cause of this, as it is probable that the precision needed turns the
matrix to being ill-conditioned. Mixed elements are used instead
in order to achieve the totally incompressible solution.

Temperature is considered to have a bidimensional distribution,
as can be seen in Fig. 3, and is based on the classical study of
Ernst [20]. The magmatic arc position (the warmest part) is con-
sistent with the subduction angle, the supposed depth where the
magmas were produced and the geological evidence.

In the uppermost part of the lithosphere, temperature, and pres-
sure are relatively low, and fractures and frictional sliding define
the mechanical behavior. That is known as brittle regime. When
depth increases, and also temperature and pressure, plastic flow is
the default mechanical behavior [21]. That process is called duc-
tile regime.

Many authors have studied the behavior of the different rocks
and the varying temperature and pressure conditions to which they
are exposed [22,23]. Although sometimes, exclusively,
temperature-dependent viscosity is used in modeling [7], it is
usual to consider more than one variable for rheology that has to
be used in large-scale modeling, particularly strain rate €, material
rigidity A, temperature 7, activation energy Q, and a power-law
exponent n, among others (Eq. (19)). Many of these constants can
be seen in Table 1. The viscosity is defined as

(18)

o =A(—1/n) . 8.”(1—}1)/71 . eQ/nRT (19)
where e}, is the second invariant of the strain-rate tensor and R is
the universal gas constant [24].

In order to be consistent with the brittle regime, shear stress at
any point cannot be greater than the maximum shear stress sup-
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ported by rocks (o) [25] that can be expressed as
d-1

o,=0y+ pgz (20)
where oy is the frictional cohesive strength, (®—1)/® is the co-

efficient of friction,

D=[(1+7)" -y 21)

and

7= tan(6) (22)

0 being the angle of internal friction considered.

Because of the nonlinearity produced due to the strain-rate de-
pendence, an iterative algorithm (Table 2) is used until a desired
level of convergence is achieved.

For the first iteration, the viscosity u is calculated as a function

of temperature 7 and a reference strain rate g,. The viscosity
distribution calculated is used to assemble the finite element ma-
trix and to calculate the pressures and velocities. Later, the strain
rate is recalculated using the velocity, and the viscosity is updated
based on the resulting strain rate.

For elements in which the resulting shear stress (Eq. (4)) is
greater than the frictional failure criterion (Eq. (20)), the effective
viscosity u is reset to

o
p=— (23)
2811
Once the viscosity difference between two iterations is consid-
ered to be small enough (lesser than a tolerance (TOL)), iteration
ends.

Table 1 Model parameters
Parameter Definition Value Units
A Material strength constant 291x1073 MPa!s!
0 Molar activation energy 151 kJ mol~!
n Power law exponent 1.8
R Universal gas constant 8.3144 J mol ' K-!
T Temperature K
N Reference strain rate 10-14 s!
gf:) Frictional cohesive strength 50 MPa
Angle of internal friction 15 deg
S, Initial atmospheric water 8§ X 10! mm? yr~!
(vapor) flux
At Time step 10* yr
hs Altitude scale
mpc Minimum precipitation coefficient
apc Available precipitation coefficient
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Table 2 Algorithm to calculate deformation due to tectonic
compression

1: procedure STOKES

2: po—f(T, 8'0) D> Start with a reference strain rate
3: repeat

4: K—K(wy) B> Assemble stiffness matrix

5: P=(K} K,\K,,) 'Kl KR > Calculate pressure

6: U=K,\[R-K,,P] > Calculate velocity

7. é’_j=% %;__'. ’:‘:1] > Calculate strain rate

8: k++ > Go to the next step

9: e —f(T,ep) B> Recalculate viscosity

10: If S> o, then D> If stress > failure criterion

oy

11: =5z,

12: end if

13: until [|u,— g, | <TOL
14: end procedure

> Reset viscosity

3.1.3 Interface Tracking and Numerical Treatment. In this
model, two interfaces are defined (Fig. 4):

* a surface interface, that tracks the shape of the topogra-
phy resulting from the tectonic deformation and the ero-
sion produced by the precipitation. This divides the ma-
terial that has been eroded from the one that is still part
of the crust.

e a Benioff interface, that separates the crust removed by
subduction erosion from the remaining one.

Both interfaces are defined by several particles (an arbitrary
number) whose movement through time is interpolated from the
velocities calculated in the procedure defined in Table 2.

The surface interface is defined at the beginning of the model in
the same position as the upper limit of the domain. The Benioff
interface is defined as the western limit of the domain (Fig. 1).
The model keeps record of the element to which every point of the
interfaces belongs. Once the velocity of each Eulerian node is
calculated, we check whether the point still belongs to the same
element by means of the inverse of the affine transformation used
in the elemental matrix calculation step. Otherwise, we find to
which element the point has moved.

Later, the velocity of the interface point v, is calculated inter-
polating the velocities from the four corner nodes v; of the ele-
ment using the form functions 4; of a four-node quadrilateral ele-
ment (Eq. (24)), namely,

N
=]

4

v,= > hw; (24)
i=1

After that, the amount of erosion is calculated for every point (see

Sec. 3.2) in the interface and its position corrected.

Both interfaces will be fully inside the domain in a few time
steps because of the acting erosion processes. That means that
there will be material that has been eroded, but it is still part of the
Eulerian mesh. Different numerical treatments need to be imple-
mented for the material eroded by precipitation and subduction.

At every Gauss point that belongs to material removed by pre-
cipitation, two things have to be addressed when the stiffness
matrix is assembled: it should have zero density

Prem = 0 (25)

and a fictitious viscosity several orders of magnitude less than the
minimum value found in natural conditions

Mrem < min(ue) (26)

In this way, the material can be numerically removed, ensuring
that the results are accurate.

In the case of the Benioff interface, tracking is not done based
on the velocities resulting from the FEM calculations, because the
velocity of the interface is known a priori. It moves with a con-
stant horizontal velocity that has been determined by previous
studies based on geological evidence. This velocity is obviously
greater than the boundary condition imposed by the subduction
compression.

All the material eroded (located to the left of the interface) is
considered to be rigid material. Rigidity is achieved by assigning
viscosity values several orders of magnitude greater than the
maximum found in natural conditions

Mem > max () 27

so the boundary conditions can bypass the material and be virtu-
ally imposed at the Benioff interface.

The time tracking of the problem is treated through the defor-
mation of the Eulerian mesh at each time step (Table 1), based on
the velocities calculation. The mesh is checked before any calcu-
lation in case an element has been affected by a large deformation
that turns it to being ill-suited for the numeric resolution, although
that never happened in any experiment because of the small CFL
(Courant-Friedrichs-Lewy) number related to the boundary condi-
tions and mesh grid.

3.2 Erosion Model. Apart from the tectonic processes, the
topography is modified by erosion in different ways. Wind erosion
and landslides can be considered as short-range processes, [26]
whereas precipitation and the establishment of a natural drainage
are long-range processes. As the main objective is to develop a

-
(]
T

T T T T
—— Surface interface
—7— Bennioff interface -
—— Eulerian mesh boundaries

)

Elevation (km)
=
T

Removed by surface erosion A

Removed by crustal erosion

20F -
30+ i
-40 | | | | | | | |
0 100 200 300 400 500 600 700
Distance from trench (km)
Fig. 4 Interfaces defined in the model to represent the surface and the Benioff zone
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Table 3 Algorithm for erosion due to precipitation

: procedure SURFACE EROSION (initwater)
: S,,(1) < initwater
: for x <2, interfacenodes do

h(x) 28,(x)
: R(x)«— (lh—x+mpc)

: If R(x) <0 then

: R(x) <0

: end if

0 8,,(x)=S,,(x=1)=R(x)[pos(x) - pos(x~1)]
: end for

0: end procedure

aps

»—\ooo.\loxm.p L N —

B> Initialize available water

> Calculate precipitation

> Precipitation cannot be negative

> Discount water precipitated

coarse large-scale evolution of the topography, the erosion due to
precipitation was considered a first-order approximation to the
surface acting processes.

In order to estimate the erosion rate, the analysis is focused on
three factors that favor erosion efficiency: millimeters of rain pre-
cipitated R, altitude /, and slope s/. Howard and Kerby [27] pro-
posed a quantitative erosion law, based on empirical results, that
includes all these factors. Recently, Willett expressed that the lin-
ear form of this law is able to capture the most important physical
processes and provides the feedback mechanisms between orogen
growth and erosion [28]. In this way, erosion rate (k) could be
expressed as

k(x) = R(x)h(x)sl(x) (28)

An initial atmospheric water (vapor) flux S,, is considered to be
transported by the humid winds from the west [16]. Elevation
determines how much of the available water is precipitated at
every point, namely,

2
M + mpc) S"—(x) (29)
hs

aps

Appropriate values for the different parameters (hs, mpc, aps)
were calibrated taking into account present-day topography and
precipitation distribution.

Surface slope (sl(x)) is included as a factor in Eq. (28) because
it is supposed to determine the effectiveness of the erosion in a
linear way [28].

After that, the water precipitated, taking into account the dis-
tance to the next node (c; ), is discounted from the total water flux
(Eq. (30)), and the latter is moved to the east.

Sux+1)=8,(x) = R(x)ep(x)

The complete algorithm can be seen in Table 3.

(30)

3.3 Isostatic Compensation Model. The behavior of the
lithosphere under conditions of tectonic uplift is similar to the
behavior of a beam under load. Whenever a mountain rises, the
deflection of the lithosphere occurs because of tectonic stacking of
the crust, which produces relief and consequent extra weight [29].
It is known that lithosphere is in a state of equilibrium whenever
it is at sea level height, which means that its thickness is about
33 km [30]. More (or less) than 33 km of thickness must be com-
pensated, which means that it will bend until the system reaches
equilibrium again.

The mechanical behavior of a beam can be expressed by means
of Timoshenko’s theory. Under this theory, a section of the beam
that is initially normal to the neutral plane, remains as a plane and
with the same length after deformation. Because of the shear de-
formations, this section does not remain normal to the neutral
axis. Then, the total rotation of the plane [ is given by the rotation
of the tangent to the neutral axis (dw/dx) and the shear deforma-

tion y (Eq. (31)),

aw

B=—""-v

T ox (31
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w being the vertical deflection.

The deformation of a cross section of the beam and the different
angles of Eq. (31) can be seen in Fig. 5.

The equation that describes the deflection of a beam is

pT b ) (32)
ax* ot 7
where D is the flexural rigidity, P the horizontal forces exerted on
the plate, and g(x) the load applied. Anyway, for this type of
geodynamical problems, horizontal forces are usually considered
to be negligible (P=0) [30]; thus, the second term of the equation
is discarded, namely,
Fw
D_ —

ax* (33)

q(x)

3.3.1 Finite Elements Resolution. By the way the problem is
posed, and under the assumptions of Timoshenko’s beam theory,
the following variational formula can be derived from the virtual
work principle (Eq. (6)):

[ (22)al 22 avemca [ (5-a{ 52
EI — — | dx+ kGA — =B\ —=B|dV
0 ax ax 0 ax ax

L
—f pow+moéBadx=0
0

(34)

where E is the Young’s modulus, G is the shear modulus, A is the
area of the yz cross section, p and m are the transverse and mo-
ment loading per unit length, respectively, and k=5/6 is a shear
correction factor based on equating the shear strain energy yield
by the constant shearing stress across the section and the actual
shearing stress [31].

Displacements and rotations vector is defined as

. Neutral axis

Fig. 5 Deformation of a beam cross section
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W B - By (35)

where w; is a displacement related with vertical deflection of node
i, B; is the rotation at the node, and N is the number of nodes.

Then, all the usual isoparametric formulations are employed in
order to interpolate, namely,

UT=[w,wy, ...

w=H,U (36)
aw

E =B, U (37)
B=HgU (38)
9B _

o =BgU (39)

Replacing into Eq. (34) and after some algebraic steps, we get

L L
lEIf ByBgdx+ GAKf (B,,—Hp)'(B,,— Hp) ax] U
0 0

L L
=J HVTVp &x+f H;m dx (40)
0 0
The system of equations can be expressed as
KU=R (41)

where

L L
K:Elf BgBﬁﬂx+GAKj (B,—Hp)'(B,—Hp) dx (42)
0

0
L L
R:f Ha,p(?x+J Hpm 3 x
0 0

and where the terms of K are related to flexure and shear stress,
respectively.

But in the context of an elastic plate overlying a fluidlike
mantle, there is one process that has to be included in the equa-
tion: the isostatic restoring force (buoyancy) [29]. When the ma-
terial added as tectonic load above the crust causes the lithosphere
to bend, material from the mantle is displaced beneath the crust.
The resistance of the underlying mantle related to the load can be
addressed by including another term in the equation.

In this way, the governing equation can be expressed as

(43)

dw
D— +Apgw =q(x) (44)
ox
where Ap is the density contrast between the load and the upward
restoring mantle and g is the acceleration of gravity.
Thus, K is modified in order to include this term in the system
of equations, namely,

L L
K= Elf ByBgdx+ GAKJ (B,,—Hp)'(B, —Hg) dx
0 0

L
+f ApgH,, dx (45)

0

3.3.2  From the Beam to the Crust. The continental lithosphere
is considered as a beam whose deflection under a certain load can
be described by Eq. (44). As the lithosphere is in a state of equi-
librium when its thickness is ~33 km, the tectonic load will be
considered as the real thickness of the lithosphere minus the thick-
ness of equilibrium state (33 km) [30].

Finding the correct flexural rigidity parameter D is not trivial
and is a specific issue that must be addressed. In many cases, the

Journal of Applied Mechanics

lithosphere is not completely homogeneous and there can be
zones of weakness due to temperature anomalies or to the history
of the crust among other factors. In this case, the temperature is
considered to be the most important factor. It is known that the
higher the thermal flux, the weaker the zone is, which results in a
locally compensated load [32].

These variations are treated through the correct setup of the
effective elastic thickness 7,. Geodynamic researchers agree that
this is not the real depth of the crust but a mechanical property
related to its behavior when loaded [32]. Anyway, it is the depth
that must be used in order to calculate the deflection because it
reflects the strength of the crust.

In this direction, we follow the guidelines of previous works
(see, for instance, Ref. [33]) that establish that the effective elastic
thickness of the lithosphere is the depth at which the isotherm of
450°C is located. In this way, flexural rigidity D can be expressed
as

3
p="e (46)
12
where T, is the effective elastic thickness and a is the width of the
beam. Thus, in warmer zones, the isotherm is near the surface, 7,
is smaller, and the beam is weaker.

At each time step, the deflection of the base of the upper crust
is calculated by defining a one-dimensional (1D) beam with the
same length as the lower boundary of the domain. The beam is
considered to have no deflection or rotation at both boundaries.
The load is calculated from the tectonic model topography. The
density difference between the load applied and the material dis-
placed by the deflection is calculated, taking into account how
much of the deflection is filled. Namely, the density considered for
the load is proportional to the infill of the deflection.

Once the deflection is calculated for the nodes of the beam, it is
added to the vertical component of the tectonic velocity for each
node in the domain. An example of the topography calculated by
the tectonic model and the resulting topography after the compen-
sation is shown in Fig. 6.

4 Geological Setting

The Southern Andes, as defined by Gansser [34], encompass
the orogen developed along the Pacific margin of South America
between 46°30’S (Gulf of Penas) and 56°S. The segment to the
North of the Strait of Magallanes is known as the Patagonian
Andes. Subduction has been continuous since early Cenozoic
times (more than 65 My (millions of years)), although the main
development of this segment took place after the late Oligocene
(30-28 My) [35]. The sudden change in plate kinematics and the
strong acceleration in the convergence rate [36] controlled the
deformation until the late Miocene-Pliocene (10-3 My) [37],
when an oceanic spreading ridge was subducted [38,39].

The Southern Patagonian Batholith is considered the backbone
of the Patagonian Andes. It runs with a NNW trend continuously
along all the segment and has an average width of 120 km [40].
The exhumation of the batholith indicates that it has suffered an
extreme denudation, which was climaxed later by the establish-
ment or enhancement of an orographic rain shadow by the middle
Miocene (17-16 My). The rain shadow caused drastic climatic
and ecologic changes as a result of more than 1 km uplift [41].
The total denudation estimated by fission track analysis ranges
from 4 to 9 km west of the present-day water divide and decreases
to <3 km to the east [42].

The facts that the batholith is located in the present forearc and
that early Miocene magmatism activity evidence (Punta Daphne
ca. 48°S) is found around 120 km from the present trench are
considered to be proofs for subduction erosion occurring in this
segment [42]. The apparent subduction angle at that moment [43]
and the depth at which a typical magma should have been pro-
duced indicate that the original position of these could have been
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Fig. 6 Example of topography calculated by tectonic stresses before and after the isostatic

compensation

more than 200 km away from the early Miocene trench. These
facts indicate an approximate rate of more than 3 km/My of
trench retreat.

4.1 Boundary Conditions for the Tectonic Model. As can
be seen in Fig. 7, the upper (sea-level) side is defined as a free
stress surface that represents the topography resulting from the
tectonic process, not taking into account the acting erosion. The
western side represents the contact between the eastward subduct-
ing Nazca plate and the South America continental plate. On that
side, the subduction imposes a horizontal velocity of 3 mm/y to
the east [36], and the vertical velocity is zero. The lower side
represents the limit of the crust and was established at 33 km
depth because of the rheological contrast with the deeper lithos-
phere. The vertical velocity was considered to be zero and the

N
(=)
]

N
(=]
I

Stress free surface

=}
14

horizontal velocity was left free in the whole segment. On the
eastern side all the nodes have a nonslip boundary condition; thus,
the deformation is restricted.

5 Results

The model was applied to a transect (vertical section) at
~47°8S. The results show that, at the beginning of the simulation,
the deformation and uplift concentrate in the magmatic arc as a
consequence of the thermal conditions. The high thermal flux in
the magmatic arc causes the material to have low-viscosity values
(Fig. 8), which results in a higher initial strain rate (Fig. 9) and in
a weaker zone where material flows/deforms easily.

It can also be seen in Fig. 10 the change of orientation for the
maximum strain rate, which moved from the “Retro-shear” to the
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Fig. 8 Viscosity at the beginning of the simulation
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Fig. 11 Topography and surface erosion at 3, 7, 11, and 15 My from the beginning

“Pro-shear” zone. Among the factors that favor this, we can men-
tion the strong erosion acting on the western side of the orogen.
This is in complete coincidence with the results of Beaumont et al.
[16] who found that when erosion removes mass from a plateau or
its flanks, strain rates increase where erosion has occurred. Strong
crustal erosion also favors this process because, due to the migra-
tion of the arc, the lowest viscosity values and maximum strain
rates can be found to the east and near the bottom boundary of the
domain.

992 / Vol. 73, NOVEMBER 2006

The evolution of the topography during early and middle Mi-
ocene was predicted (Figs. 11 and 12(a)).

As the orogen grows, erosion turns more effective, resulting in
a higher erosion rate. When it reaches a certain yield altitude,
humid winds cannot bypass the water divide, causing an asym-
metric precipitation pattern with the western side heavily eroded
(Fig. 11). At the same time, as subduction erosion forces the shift-
ing of the magmatic arc, eastern zones are heated and deformed
(Fig. 10) resulting in a consequent surface uplift. The combination
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Fig. 12 Topography, precipitation, and available water flux cal-
culated by the model at approximately middle Miocene (12 My)

of both processes results in a progressive migration of the maxi-
mum locus of exhumation toward the east, as can be seen in Fig.
11.

The amount of denudation along the transect in our simulation
is in complete agreement with the studies of Thomson et al. [42],
who were able to quantify approximately the eroded material in
the zone. They demonstrated by means of fission track analysis
that the surface erosion since ca. 30 Ma. in the western side of the
water divide was between 4 and 9 km, while in the eastern side is,
at most, 3 km. It can be seen in Fig. 11 that the calculated denu-
dation is up to 8 km in some parts of the transect and only con-
sidering the period modeled, which would imply a good corre-
spondence with Thomson’s figures. Also, the volume (per unit
width) of the material eroded from the surface in the section con-
sidered is about 700 km?. This is coherent in orders of magnitude
with the volume of material sedimented to the east of the orogen.
The deposits are known as Santa Cruz Formation [44] and extend
from almost the present water divide to the Atlantic coast. The
period encompassed by this formation is almost the same as the
one of the simulation.

It is important to remark that the exhumation pattern shown in
Fig. 11 has exactly the same features as the one proposed by
Willett for orogens with an asymmetric pattern of erosion (higher
in prowedge), with a broad domal exhumation pattern across the
prowedge interior [28]. The main difference between both experi-
ments is that in Willett’s work there was no crustal erosion; thus,
the process reaches a steady state at some point of the evolution
and there is no surface uplift in the retrowedge. In the case of our
simulation, the migration of the magmatic arc toward the east
favors some deformation and surface uplift on the retrowedge.

The total shortening obtained in the simulation during the con-
sidered period is ~45 km. This shortening is in complete agree-
ment with the detailed field evidence published by Ramos where
the absolute minimum shortening for this period ranges from 22 to
45 km [37].

Another important result is that the model predicts the estab-
lishment and posterior enhancement of the orographic rain
shadow in similar circumstances as the ones described by Blisniuk
et al. [41], who published data that support the drastic ecological
and climate changes were caused by this process. The asymmetric
pattern of precipitation predicted for middle Miocene can be seen
in Fig. 12(b). Precipitation reaches its maximum value almost at
the topographic divide in coincidence with present-day distribu-
tion.
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6 Conclusions

The results obtained with this model, particularly developed to
study subduction zones, are widely satisfactory. The capability of
following the topographic evolution through millions of years,
quantifying eroded volumes of rock and the time where it could
have happened, knowing the tectonic stresses distribution inside
the upper crust, understanding the way in which thermal condi-
tions are related to mechanical properties of the crust, and achiev-
ing the flexibility to adapt to multiple geometries and configura-
tions through a correct setting of parameters, among other
features, turns this model into a powerful and flexible formal
framework for a geologist researching large-scale evolution of
noncollisional orogens formed parallel to subduction zones.

In this particular case, it is important to remark that the model-
ing of the acting processes in this region during such a long period
of time is completely novel, contributing to support some geologi-
cal hypotheses about the Miocene deformation of the Andes at
these latitudes.
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shear band modeling is presented. The discrete constitutive model, representing the co-
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1 Introduction

Shear bands in plastic solids arise as a typical deformation
mode due to a strain localization phenomenon, during the inelastic
deformation processes, when the material becomes unstable. Nu-
merical modeling of shear bands using discontinuous velocity
fields was previously proposed by several authors (see, for ex-
ample, Armero et al. [1], Regueiro et al. [2], and Samaniego et al.
(3.

In a number of problems, a large stable process of irreversible
isochoric plastic deformation precedes the inception of a strain
localized mode. In these cases, and from a computational point of
view, it should be considered the deficient response provided by
standard finite elements when kinematics incompressibility con-
straints are present. This particular aspect of the numerical ap-
proach is a classical, and extensively studied, issue in computa-
tional mechanics (see Zienkiewicz et al. [4], Hughes [5]).

In this paper we present a stabilized mixed finite element for-
mulation, which has been recently developed for J, plasticity
[6,7]. The kinematics is enriched with the addition of an embed-
ded strong discontinuity mode with elemental support, like that
proposed in Oliver [8,9], for capturing the characteristic shear
band type deformation mechanisms. The idea of using a well be-
haved finite element for plasticity in conjunction with an embed-
ded strong discontinuity kinematics is not new in shear band mod-
elling. Armero et al. [1] have used a triangular MINI element and
Regueiro et al. [2] the classical quadrilateral BBAR element, both
of them enriched with an embedded strong discontinuity. Never-
theless, the authors understand that the problem remains open
since, in their opinion, the linear triangle has a number of advan-
tages which make it particularly suitable to be enriched with em-
bedded discontinuities. The stabilized element here presented is a
linear triangle.

The Continuum-Strong Discontinuity Approach [10] adopted in
this work, determines the shear strain rate-traction rate separation
law of the shear band. A characteristic of this procedure is that the
resulting discrete law governing the shear band evolution, i.e., the
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emphasize the increase of the numerical solution accuracy obtained with the present
strategy as compared with alternative procedures using linear triangles.
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cohesive force acting across the shear band surface, is a projection
onto the discontinuity surface of the bulk material constitutive
model. In this work, the nonlocalized (bulk) material behavior
follows a rate-independent J, elastoplastic law with strain soften-
ing response.

Alternative models for simulating shear bands have been nu-
merous in the past. Recently, Cervera et al. [11] have presented a
model that uses the same stabilized mixed finite element shown
here, but without introducing the embedded strong discontinuity
mode into the finite element. However, the authors think that the
additional features provided by the CSDA deserve to be studied
too.

The paper proceeds as follows: In Sec. 2, we present the en-
riched kinematics with the strong discontinuity mode and the dis-
crete constitutive model governing the shear band evolution. Sec-
tion 3 presents the finite element formulation with the stabilization
procedure and Sec. 4 its numerical implementation. In the present
work, we are interested in the analysis of the numerical stabiliza-
tion effect, its influence on the shear-band capturing and the sub-
sequent post-critical response, particularly when embedded strong
discontinuities are used. This analysis is presented in Sec. 5 by
means of two numerical applications. In the first case, a slope
instability problem, we compare the numerical response obtained
by different finite element implementations, including standard
and stabilized mixed linear triangles with and without embedded
strong discontinuities, quadrilaterals, etc. Also, we analyze the
convergence rate of the solution with the finite element mesh size.
In the second example, the near incompressibility constraint is
imposed already at the beginning of elastic regime. In this context,
again we study the ability of the model to capture the shear band
and the obtained peak load is compared with an analytical solution
taken from the literature. Finally, the conclusions are presented.

2 Problem Settings

2.1 Strong Discontinuity Kinematics. Let () be a body
which experiences a shear band failure mode. The material sur-
face S, with normal n intersecting the body (), represents the zone
with localized strain rate, as it is shown in Fig. 1. The appropriate
kinematics describing this phenomenon should account for a dis-
continuous velocity field across S, such as the following one:

i(x,t) =ux,1) + Hg(x) Blx,1) (1)

where ﬁ(x,t) represents a continuum field, Hg(x) is the Heavi-
side’s step function shifted to S (Hg(x)=1Vx e Q* and Hg(x)
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Fig. 1 Strong discontinuity problem

=0Vx e Q7), that, multiplied by the velocity jump vector 3, in-
troduces the discontinuity term into the velocity field.

The infinitesimal strain rate being compatible with this velocity
field, is a generalized function in ):

&(x,1) = (Vﬁ)sym=—é + 53(3 ® n)¥m )

composed of a regular term &= (V)™ +Hg(VB)™™ and a singu-
lar one, given by the Dirac’s delta function (Js) shifted to S.
The boundary value problem (BVP) of a quasi-static elastoplas-
tic body showing a strong discontinuity kinematics, such as a
shear band, is described (in rate form) by the following equations:

V.og+ph=0 VxeQS (3)
u=u" Vxerl, (4)
o-v=t" Vxel, (5)

where the Cauchy’s equation (3), relating the stress rate ¢ with

the rate of volumetric forces piJ, and ignoring the inertial effects,
is defined in the regular part of the body (2/S), i.e., the points in
() excluding those in & and where no strain rate localization ef-
fects are observed. The boundary condition in velocities #”* and
rate of tractions ¢* are imposed on I',, and T',, ( Egs. (4) and (5)),
respectively. Furthermore, the equilibrium condition across the
discontinuity surface S requires that:

VxeS8 (6)

t'=¢"-n=06"-n=t

where £+ (¢7) is the traction vector applied to the body part Q* (or
Q)7) on the boundary S. If cohesive tractions (¢s) are considered in
the shear band interface, the equilibrium condition in rates also
requires:

VxeS (7)

where, and consistently with the Continuum-Strong Discontinuity
Approach, a fundamental hypothesis has been adopted: A stress
state o g exists into the discontinuity zone S (where singular strain
rates are present), which is defined by a regularized version of the
constitutive model that describes the regular part of the body
QO/8, see [8,12,13].

i‘5=6'5-n=ir+-n=i+

2.2 Continuum Constitutive Model and Discrete Cohesive
Law. We assume for the (}/S domain a rate-independent J, elas-
toplastic material model with strain softening described by the
equations:

o=C:(¢-8"); C=\1o1)+2ul (8)
&= yid,p=yM )
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a=vyd,p=7y (10)
G=—Hda=—-Hy (11)

3
d(0,9)=I(0) - (0,~q); Jy(0)= E(S:S) (12)
y=0; ¢<0; yp=0 (13)

where C is the fourth order elastic constitutive tensor depending
on the Lamé’s parameters (A and ), with 1 and I being the sec-
ond and fourth order unit tensors, respectively, €’ is the plastic
strain rate tensor, ¢ and « are scalar internal variables and ¢ is the
yield function describing the elastic domain depending on the de-
viatoric stress tensor S=0“" (through the second invariant .J,)
and the yield strength o,. We denote M the plastic deviatoric
strain rate direction (being tr(M)=0) and 7y the plastic multiplier.
From Egs. (10)-(12), « is identified as the total equivalent plastic
strain. Special attention should be paid, in the present setting, to
the softening modulus H(H <0), which plays a main role in the
localization condition.

In the Continuum-Strong Discontinuity Approach, followed in
the present work, it is assumed that the stress o is determined by
a regularized version of the model given by Egs. (8)—(13). This
stress state, which due to equilibrium conditions must be a
bounded tensor, defines the cohesive behavior of the interface S.

Following Simo et al. [12] and Oliver [10], and considering the
regularized sequence of functions Js=lim,_,(us/h) (where
usx € S)=1, usx & S)=0), it can be shown that (variables with
subindex (-)g are referred to their evaluation at the domain S):

Gs=C:(¢5- €8) =C:[Es+ Ss(n ® B)¥™— %] (14)
is a bounded term whenever:
Ss(n © PV — £k =0 (15)

Condition (15) can be verified by introducing a singular mea-
sures for the plastic multiplier y and the inverse of the softening
modulus H:

po

Hgl = 5sﬁ_l;

Ys= 0sY; (16)

where H is an intrinsic softening modulus, determined by the
material fracture energy G. Therefore, from Egs. (11) and (16), ¢
becomes a regular term, even when €g is singular:

js=~7H (17
and replacing Eq. (9) into Eq. (14), yields:
Ms=(n® B (18)

which has been termed the “strong discontinuity equation” [10].
Recalling that:

_ s

Mg=/> (19)
*T Va2

and given the particular structure of tensor (z® B)®™, Eq. (18)
imposes the strong discontinuity condition on &g, which estab-
lishes that g is only characterized by the traction vector #g, see
Fig. 2. Additional details on this aspect can be found in [10].
This result allows us to rewrite the constitutive model only as a
function of the traction vector and velocity jumps (¢ versus ﬂ)
Let the traction vectors ¢s and tgf‘v be identified by the components
t5={(0,1,)5.(S,.)5. (S, st € R3, where the identity between the
shear components of ¢ and S are used, tgeV={o,(tT)$,(t§)5}, see
Fig. 2, and let the vector of plastic strain rate direction mg be
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Fig. 2 Stress tensor structure in S

given by mg=13t3"/([¢3"|) € R3. Then, the yield function and
the consistency equation, in a loading process, can be written as
follows:

bs=\3E A5~ (0, - q9):  bs=mg- i -YH=0 (20)
We remark that £5" is normally termed the Schmidt resolved

shear stresses for the slip plane S, see [14].
In a loading state (y>0), Egs. (18) and (20b) determine the

velocity jump B

. mg- tgev 5
B=\———10, -n-C:Mg):; Q.,=n-C-n  (21)

H
Equation (21) is consistent with a classical constitutive assump-
tion on the slip phenomenon in single-crystal plasticity: The shear

rate (£=||B|), in a slip system, depends on the stresses only
dev

through the Schimdt resolved shear stress (¢£5). Implicit in Eq.
(21) is the fact that the velocity jump Bis compatible with a slip
line mode (B-n=0) and that:

er|(H=0) : ﬂ: 0’ er|(H=()) =n- Cep ‘n

where C,, is the perfectly plastic constitutive tensor and @, is the
so-called “localization tensor.”

The degenerated (projected) cohesive model, traction-
separation law, derived from the continuum model and induced by
a strong discontinuity kinematics, is displayed in Egs. (23)—(26):

(22)

B=%0;"- (n-C:My) (23)
Gs=-yH (24)

$s<0; ¥y=0; Yds=0 (25)
ps=\BE 15~ (0, - q9) (26)

3 Stabilized Mixed Variational Formulation Using
Embedded Strong Discontinuities

Decomposing the stress rate into its deviatoric S, and spherical
—pl ( '=—%tr((’r)), parts:
o=-pl+S Vxe QS (27)

and considering from the constitutive model that p=—«V -1,
where « is the volumetric modulus, the BVP can be set within a
classical variational mixed (velocity, pressure) format: find &
eV, and p € Q such that:

Journal of Applied Mechanics

K

ﬁ(u,p;n,q)=f [(Vn)sym:«'ﬂq(vmp)—n-f“”]dﬂ
Q

=0 VpeV, VgeQ

The admissible functional space for ¢ is QEL(ZQ,S). We define

the space of admissible functions for velocities 1, by assuming
the existence of nonsmooth terms representing the velocity jumps
developed in the shear band zone. These terms are included via
the embedded strong discontinuity technique. Let the velocity
space V, be defined by:

(28)

V,={a(x) =u(x) + Mgx)B:u e V,} (29)

Ms(x) =Hs— ¢(x) (30)
where M is the so-called elemental unit jump function [9],
whose support is a given domain (), that includes S. The ¢(x)
term can be taken as an arbitrary smooth function such that:
o(x e Q=1 and p(x € Q7)=0. Also B e R4™, with dim standing
for the space dimension, is the velocity jump vector. The virtual
(kinematically admissible) velocities lie on the space:

Vy={n=7(x)+ Msx)3B; Hlr, e Vi(7lr, =0} (1)

It should be mentioned that % and 7 are smooth functions
(V,CHY.

Introducing the spaces (29) and (31) into Eq. (28), the govern-
ing equations can be alternatively written as follows:

f S-pD:(VH)»dQ =P V7mel?  (32a)
QIS
f q<’3+(v-u))dn=o Vgeo (320)
s K
f o (VMs® 8B)Y™dQ=0 V6B e RI™  (32¢)
Q

where P‘(lem is the virtual power of the body forces and external
loads.

Recalling that VM s=(8sn—Ve¢), then Eq. (32¢) imposes a
weak traction continuity condition on the discontinuity surface
and it can be rewritten as:

f(rs-nds-f (S—p]l)~V<de=f GSedQ=0 (33)
S O/s QO

where we have identified the matrix G° with the operator VMg
applied to stresses. A widely used variational nonsymmetric (not-
consistent) formulation, redefines the weak traction continuity Eq.
(33) by exchanging V¢ by n, in the second left hand side term,
and computing the mean values of the traction continuity [15]:

1 1 . ~
_f irs«ndS——f (S—pl)nd.Q:f GNadQ =0
ls S Q s Q

(34)

where /g is the length of discontinuity S intersecting the finite
element, see Fig. 4. In the numerical examples, we present solu-
tions considering both procedures. We use the term “‘symmetric
formulation” when Eq. (33) is implemented and “nonsymmetric
formulation” if condition Eq. (34) governs the traction continuity.

3.1 Stabilization. It is well known that mixed formulations
like Eq. (28) suffer from numerical instability issues [4,5]. The
instability problem becomes particularly serious when piecewise
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Fig. 3 Projection of the pressure gradient

linear polynomial functions of continuity C° are chosen for inter-

polation of both spaces V, and Q, because in that case the so-
called Ladyzhenskya-Babuska-Brezzi condition (or simply LBB)
is not satisfied [16]. A remedy for this unwanted effect has been
the introduction of stabilization terms S, into the variational prin-
ciple Eq. (28). Particularly, this term is added to the left hand side
of Eq. (32b).

The stabilization term used in this work has been introduced by
Codina [17] in the fluid mechanics context and extended by
Cervera et al. [6] to J,-plasticity problems. It has been termed the
orthogonal sub-scale method, PGP, and is defined by:

Sy= f Vg (r(Vp-1D)dQ (35)
s

where 11(617") is the projection-L(zﬂ/& of the discrete pressure
rate gradient (Vp) on the regular finite element approximation

space (V,), see Fig. 3:

f (Vp-TD) - x)dQ=0; VYxeV, (36)
ars

This procedure considers the term S, proportional to a stabili-
zation factor 7, depending on the shear modulus w and a charac-
teristic finite element size i (we have adopted & to be the square
root of the finite element area):

h2

T=CcT—

2u

where the scalar coefficient ¢ is a constant parameter (¢c=O(1)).

Introducing the stabilization term (35) into the variational equa-
tion (28), and considering that Eq. (36) shall be included as an
additional restriction, it is possible to rewrite the variational prin-

(37)

ciple, in (ﬁ,ﬁ,p,ﬁ), as follows:

f (S -p):(VH¥™dQ =P VHel  (38q)
/s

(b)

K

fq(E+V-u)dQ+f Vg (r(Vp-)dQL=0 VgeQ
(9753 oS

(38b)

f (Vp-I) - xdQ=0 VyxeV, (38¢)
s

f os:(n® 6p)sy;“d3—f (S -p):(Vo ® SB)¥™dQ)
S s

=0 VBeRIM (38d)

Equations (38a)—(38d) at time ¢, can be alternatively written in
terms of the total stresses and displacements.

4 Numerical Implementation

Considering ) e R?, simplicial finite elements (linear triangles)
with C° piecewise linear interpolation polynomials for pressure
and regular displacement fields have been chosen for the present
implementation.

4.1 Displacement Field Approximation. The continuous part
of the displacement u={i,,, T is interpolated in the standard
way by using piecewise linear shape functions Nj,(x) (supra index
(-)¢ refers to element e). The elemental unit jump function
M) =HS(x) = (N%)"%*(x) is built by using the linear shape
function (N%)"d* corresponding to that nodes belonging to the

Q* region, see Fig. 4. The support of MS is, therefore, one
element:

ue(x,1) = NS (o)us(r) + M4(x) + B(1);  VxeQ°

where (7) refers to nodal values.
The strains, in a vectorial format (£e={8§,8;,8i),}r), can be
written as follows:

(39)

£(x,1) =Bgl_Ate+Ggﬁe; Vx e (40)

where B=(VN;)"™ is the strain-displacement matrix and G° is
the matrix given by:

0 9;( NZ ) node+ 0

nx
G = 55 0 n, |- 0 ﬁy(N:;)nod& (41)
ny n, A, (NGt 3 (Ng)roder

4.2 Interpolations of the Pressure and L2-Projected Pres-
sure Gradient Fields. The L>-projected pressure gradient field
(TT°) is interpolated by using identical shape functions to those

Fig. 4 Displacement field interpolation: (a) Element d.o.f.’s, (b) ¢®(x) function, (c) Heaviside’s step function H%(x), (d) El-

emental unit jump function M%(x)
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chosen for the velocity approximation. In the same way, the pres-
sure is also interpolated by means of C° piecewise linear
functions:

II¢(x,1) =NZ(x)ﬁ“(t); pe(x,1) =Nf,(x)ﬁf(t); Vxe s

X)) =N, @)X ¢‘(x)=N,(x)¢; VxeS (42)

where N; are, again, the classical linear shape functions.

4.3 Discrete Equations. Internal Force Evaluation. The
discrete version of the variational principle Eq. (38) can be for-

mulated as follows: Find 7, D, 11, and B such that they verify the
essential boundary condition Eq. (4) and the following system of

equations:

F(inl) _ F(ext) =0 (43)
where the internal Fi™ and external F**V generalized forces are
defined as:

nel
A f BeTSe(nH)dQ _ Goﬁ(nﬂ)
F(im) e=l /8¢
u
, : A 1
Fint) — Fl()mt) . G(T)'l—l(ml) _ |:;Mp + L]ﬁ(n+l) — Qﬂ(nﬂ)
(int)
F/-;“ nel _
A f GTAc*d()
e=1 ¢
) (44)
F(exl) F£EX1)
u u
F(ext) — F[()exl) =|_ HTﬁ<n) (45)
(ext)
Fg 1}

A being the finite element assembling operator, and matrices Gy,
Mp, M, L, H, and Q are computed as follows:

nel nel
Go= A BINdQ |; M,= A f NNdQ
=1 Jayse ! et e T

(46)
nel
M,= A f NTNedQ |
=1 J s

nel

L=A { f (VN;)TT(VN;)dQ]
e=1| Jayse

nel nel
H=A { f NZTT(VN;)dQ]; 0=A l f N;THTGfdQ]
e=1] J s =1 Jqyse

(48)
Implicitly, Egs. (43)—(45) introduce the strategy of assuming

the uncoupling of the field IL. Its value at the end of step n(I1™),
that is determined by using Eq. (38¢) with the previously known
variable p:

(47)

(49)

is used for solving the system Eqgs. (43)—(45) at step n+ 1. This
strategy has been previously utilized by Codina et al. and Chi-
umenti et al. [17-19], allowing for a more efficient computational
treatment of the problem.

Following the same integration procedure presented in Oliver
[9], one additional Gauss point is considered for evaluation of

11 = M HOp)
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strains and stresses at S. Thus, integrals on S in Eq. (44), are
referred to terms evaluated in those additional Gauss point multi-
plied by an adequate weight.

4.4 Tangent Matrix. The use of the Newton-Raphson scheme
for solving Egs. (43)—(45) requires the evaluation of the system

jacobian matrix J. Considering that X =[u p B]" is the indepen-
dent variable vector, J can be evaluated as follows:

int) A
SFn K. Ky Kap 5
oF Sm) _ Ky Kp 1 K P
oF " Kgi Ky 1 Kg B
3F(inl) _&F(inl) S5X
X
(50)
where submatrices K;; result:
nel
Kg=A J BB | K=K ;=-G,
e=1] Jayse Qs 51)
nel 1
eTdevge el. = =
KﬁB:I_\ f B ‘C Gdﬂ N Kpp__ MP+L
e=I| J s K
/s (52)
nel
— reTrare el. —
Kg, = I_\ —J G ][diQ ; Kp=-0
e=l st pa
(53)
nel [ _ nel i _ ]
Kgi= A J GTCBdQ’ |+ A J G'CB*dS*
=1 J s 1 e s ]
(54)
nel i _ nel [ _ T
Kgs= A f GTCGdO | + A J GTCGdS®
=t Jause 1 e Js |
(55)

5 Numerical Simulations

The numerical response of the present model is analyzed by
means of two bidimensional problems. Particularly, we are ad-
dressing our study to determine the ability of the numerical model
for capturing the strain localization mode and the structural peak
load. Also, we analyze other fundamental aspects in failure me-
chanics analysis under softening regime, such as the objectivity of
the numerical results with independence of the finite element
mesh size and orientation.

The mathematical verification and consistency of the model is
studied by comparing alternative finite element formulations,
which are denoted using the nomenclature in Table 1. As it can be
seen there, the set of elements that we use for this comparison
belongs either to the generalized displacement finite element for-
mulation (the constant strain triangle STDSD in the Table and the
BBAR quadrilateral element taken from Simo et al. [20]) or to the
mixed (pressure-velocity) formulations including the PGP stabili-
zation scheme. All of them, excepting the first one, are enriched
with an embedded strong discontinuity kinematics with elemental
support. The traction continuity condition is implemented using
both procedures: The symmetric element type given by Eq. (33)
and the nonsymmetric element type given by Eq. (34).
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Table 1

Element formulations

Nomenclature Element topology Kinematics Incompressibility treatment Element type
PGP Triangle Smooth Velocity PGP (mixed) Scheme

STDSD-N Triangle Strong Disc. None (displacement) Nonsymmetric
STDSD-S Triangle Strong Disc. None (displacement) Symmetric
PGPSD-N Triangle Strong Disc. PGP (mixed) Scheme Nonsymmetric
PGPSD-S Triangle Strong Disc. PGP (mixed) Scheme Symmetric
BBARSD-N Quadrilateral Strong Disc. BBAR Formulation Nonsymmetric
BBARSD-S Quadrilateral Strong Disc. BBAR Formulation Symmetric

In the PGP formulation without embedded strong discontinui-
ties (denoted “smooth velocity kinematics” in the Table 1), solu-
tions have been obtained by regularization of the softening modu-
lus H, redefining it in accordance with:

H™¢=hH (56)
where £ is the characteristic size of the element and H the intrinsic
softening modulus computed as in Eq. (16).

A comparison of the relative computational cost between
PGPSD and BBARSD elements is also reported. For this purpose,
it must be considered that the examples have been run in a PC
equipped with a single Pentium 4 -3.0 GHz, 512 MB Ram—
Processor.

For all cases, a stability factor “c” near to unity (see Eq. (37))
was adopted to perform the numerical tests.

5.1 2D Slope Stability Problem. When undrained loading
conditions are assumed, the constitutive behavior of saturated co-
hesive soils can be approximately modeled by an associative de-
viatoric plastic flow law. In this context, we use a J2 model to
simulate a typical plane strain geotechnical slope stability problem
and its corresponding shear band failure mode. A similar example
was presented in Regueiro et al. [2] and in Oliver et al. [21] where
a BBAR element with embedded strong discontinuities was used.
Due to the lack, at least up to the author’s knowledge, of an
analytical or exact solution for this problem, the above mentioned
strategies (denoted as BBARSD-N in Table 1), will be used as a
reference solution to compare quantitative results.

The effects of including, or not, the strong discontinuity mode
are particularly remarked in the present analysis. Also, the nu-
merical stabilization influence on the solution, which is contrasted
with similar formulations that do not use such strategy, is studied.

The dimensions and boundary conditions of the physical model
are shown in Fig. 5. The test consists of the application of an
incremental downward prescribed displacements “éu” at the
middle of a rigid foot (point A in the same figure). This situation
leads to an instability problem and to the development of a shear
band that propagates through the soil embankment. The material

f 4m ,  6[m]

l I I

8u‘l' .

Rigid foundation

q

Typical failure surface Saturated soil
o) OANNaIe0 S

10 [m] <]

AN AN I\ A AN
| 10 [m] | 10 [m] |

Fig. 5 Slope stability problem: Geometry and boundary
condition
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properties used in the simulation (a J2 plasticity model equipped
with linear softening) are: E=1.0¢7[Pa] (Young’s modulus), v
=045 (Poisson’s ratio), o,=1.0e5[Pa] (yield strength), H=
—2.0e5[Pa] (softening modulus), G;=8e3[N/m] (fracture energy).

Three meshes of triangular elements have been considered for
numerical purposes: M1, M2, and M3 (see Figs. 6(a)-6(c)), with
characteristic element size h=1[m], h=~0.5[m], and &
~(.25[m], respectively. Notice the particular mesh configuration
that has been intentionally generated against to the expected strain
localization path. This situation represents a challenge for the lin-
ear triangle kinematics. A fourth mesh, of quadrilaterals (M4 in
Fig. 6(d)), with element size similar to M3, is used to obtain the
BBARSD-N reference solution.

Figure 7 shows, in gray color, the evolution of those PGPSD-N
elements that are subjected to plastic loading conditions in four
different stages, as the process advances along the time. It is clear
from this figure how the strain localization phenomenon is devel-
oped, inducing the shear band mode.

In Fig. 8 again we show, in gray color, those elements in the
meshes M1, M2, and M3 and using the PGPSD-N approach, that
are post bifurcation regime (were the strong discontinuity is ac-
tive) at the end of the simulated process. We can observe that the
three meshes display a qualitative agreement respect to the shear
band trajectory, with a clear tendency to converge with the mesh
refinement, toward a well defined curve which compares well with
that reported by Regueiro et al. [2]).

Figures 9(a) and 9(b) compare the deformed mesh solutions
obtained using the mixed stabilized formulations either without
embedded strong discontinuity (PGP) or with it (PGPSD-N). In
the first case, it is observed that the zone of strain localization has
a pronounced trend to follow the mesh direction (mesh bias). Fur-
thermore, the solution of the PGP procedure presents a more dif-
fuse deformation pattern respect to that shown by the PGPSD-N.
Both effects determine a noticeable difference in the structural
response (see Fig. 9(c)), mainly in the limit load prediction.

Next, we report the structural response in terms of load versus
the vertical displacement du curves (point A). Figure 10(a) shows

En
RN A LT 7
IV,
AV
W4 4 G )
ﬂlmﬂkﬂlﬂﬂn‘lﬂﬂa "4

P4 A YA YAATATAYAT AT
AR

AR

X

(a)

(C) M3: 3541 triangular elements (d)

M4: 1865 quadrilateral elements

Fig. 6 Slope stability problem: Finite element discretizations
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(a) (b)

(c) (d)

Fig. 7 Slope stability problem: Evolution of plastic loading states using the PGPSD-N element (M3)

these results, which correspond to the PGPSD-N element and dif-
ferent meshes. The M3 solution compares well with those ob-
tained using the BBARSD-N strategy. In Fig. 10(b) we plot the
same results corresponding to the M3 mesh, but using different
finite element formulations. The two responses obtained with the
STDSD procedure reveals a locking (spurious) effect produced by
the isochoric deformation constraints, overestimating the dissi-
pated energy and peak load.

It must be observed that the PGPSD-N scheme shows a good
prediction of the limit load P,, as compared with the reference
solution, and also in terms of the dissipated energy during the
localization process. To quantify both features, we plot in Fig. 11
the convergence analysis of the PGPSD-N and STDSD-N solu-
tions. Figure 11(a) displays in a logarithmic plot the linear regres-
sion curve of the dissipated energy error (||e||;2) as a function of
the mesh size h. The relative error (|le]|.2) of every solution Sy,

Fig. 8 Slope stability problem. PGPSD-N elements in post-bifurcation condition at the end of
the analysis: (a) Mesh M1. (b) Mesh M2. (c) Mesh M3.

(a)

i 10° .
£ = PGP M3
§ 8 s PGPSD-N M3
k] r ‘®C
g \ g
TN
w A
i £
=
= % L

o 0.1 02 03 04

Vertical displacement u [m]

(c)

Fig. 9 Slope stability problem. Deformed configuration at point “C” in the equilibrium path: (a)
PGP Formulation; (b) PGPSD-N Formulation; (¢) Comparison of the Load-Displacement (5u)

curves for both strategies.
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Fig. 10 Slope stability problem. Load-displacement (6u) curves: (a) PGPSD-N Convergence.

(b) Comparison of elements.
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(58)

i=1,23

s

”PM(Mi) _PM(REF)”.
”P”(REF)H

N is the reference solution.

lell

BBARSD-
(M3)

S
Similarly, Fig. 11(b) displays the linear regression curve of the

limit load prediction error as a function of the size mesh /. The
relative error of the peak load solution is determined by means of:

where Puy;) is the maximum value of the vertical footing reac-

S(REF)

(s (REF))zd T

T

(Somiy = Srer)’dT
0

;
vl

HS(REF)”L2

”S(Mi) - S(REF)”LZ \/

where Sy, is the load vs. displacement (Ju) curve of the mesh M;
lle].2

(i=1,2,3), is computed in terms of a L? norm as follow:

From Fig. 11 it is clearly observed a higher accuracy and con-
vergene rate, either in limit load prediction as also in the dissi-
pated energy, of the PGPSD-N model if compared with athe

tion displayed by mesh M; and Puggp)= pqul;/;;?SD-N.
STDSD-N element.

(57)

i=1,2,3
where the integration parameter 7 corresponds to the vertical dis-

placement (Su) and 7,,,,=max(du) is the same for all cases, while

Finally, the comparative computational cost for PGPSD-N ele-

ment, relative to BBARSD-N formulation, is outlined in Table 2.

Every mesh M1, M2, and M3 of PGPSD-N elements is compared
with an equivalent mesh of quadrilateral BBAR elements having

identical number of nodes and element sizes.

Table 2 2D slope problem. Relative computational cost.

Total time

Stiffness matrix Solver

Residual forces

Mesh

5.2 Center Cracked Panel. A square (10 X 10[cm?]) cracked
panel subjected to uniaxial vertical displacement is analyzed.
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Fig. 12 2D cracked panel: (a) Geometry and boundary conditions. (b) Mesh M1: 1301 elements (h=4[mm)]). (¢) Mesh M2: 5252

elements (h=~2[mm)).
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based on a structured mesh refinement from a reference so-

proven quantitatively through a classical convergence study
lution taken from different sources ([2,23]);

Plane strain conditions are assumed and, due to symmetry, only a
quarter of the model is considered for the simulation (see Fig.
12(a)). A quasi-incompressible elastic J2 plastic constitutive

The PGPSD element shows an improvement in the conver-

model with linear softening is used, based on the following mate-

gence rates and diminution in the relative error magnitude in
comparison with the standard (nonstabilized) enriched ele-

0499, o,=1.0e5[Pal, H

1.0e7[Pa], v
—2.0¢5[Pa], Gy=4e3[N/m]. Unlike the previous example, an ar-

E=

rial parameters:

PGP strategy. In addition, it compares very well with

ment (STDSD) and also with respect to the nonenriched
BBARSD formulation.

The analytical peak load solution for a problem with sharp
crack type and considering perfect elastoplasticity, is available

bitrary distribution of elements is now adopted, see the meshes
from Limit Analysis Theory (LAT) [22].

M1 and M2 in Figs. 12(b) and 12(c).

The computational cost, for the two bidimensional cases

times greater than that obtained with the BBARSD proce-

dure) considering that both set of d.o.f.’s, IT and B, can be
decoupled and statically condensed in the numerical imple-

presented in this work, seems to be reasonable (1.3 to 1.4
mentation respectively.

Figure 13(a) shows the equilibrium curves (vertical displace-
ment versus resultant force P) obtained for both meshes, using the

PGPSD-N formulation, and also the PGP without discontinuous
can be observed with mesh refinement toward the BBARSD-N

solution, and a reasonable accuracy respect to the analytical peak
load solution. It must be reported that the standard triangle

(STDSD-N) fails, dramatically, in simulating this near incom-

enriching modes. Again, in the first case, an adequate convergence
pressible test.

However, we have observed some troubles that must be re-
marked. The linear kinematics of the simplicial elements (tri-

for Latin American,

This work has received partial financial support from Consejo
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angle), before the activation of enriched modes, seems to be fairly
stiff, which produces a noticeable effect on the bifurcation condi-
matical locking. This unsolved limitation and the extension to 3D
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duces, in certain pathological mesh orientations, a serious kine-
context, motivate future research works.

tions, delaying the activation of the shear-band. This effect in-
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In addition, the deformed mesh configuration of the PGPSD-N

model, see Fig. 13(b), displays the predicted collapse mechanism.

The main contribution of the present work is the presentation of
a new simplicial finite element, called PGPSD, which appears as
an improvement respect to previous models, leading to robust and
accurate simulations for shear band problems induced by strain
softening in plastic material models. It has been developed within
the context of the Continuum-Strong Discontinuity Approach. The

proposed formulation is based on a consistent coupling of two

6 Conclusions
techniques:

The pressure gradient projection stabilization scheme

(PGP);

(i)
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Coupled With a Fluid

We consider a method to compute the vibration modes of an elastic thin structure (shell
or plate) in contact with a compressible fluid. For the structure, the classical Naghdi

equations, based on the Reissner—Mindlin hypothesis, are considered and its approxima-
tion using the mixed interpolation of tensorial component 4 finite element method. The
fluid equations are discretized by using Raviart-Thomas elements, and a non-conforming
coupling is used on the fluid-solid interface. Numerical experiments are reported, assess-
ing the efficiency of this coupled scheme. [DOI: 10.1115/1.2173675]

1 Introduction

In this paper we are interested in the numerical computation of
the vibration modes of a fluid-structure interaction problem in a
three-dimensional (3D) domain. This is a very important engineer-
ing problem (e.g., for treatment of noise in cars or planes) and a
large amount of work has been devoted to this subject (see for
example [1]). One problem of this kind is to compute elastoacous-
tic vibrations when the structure is an elastic shell and the fluid is
ideal and compressible, both subject to small displacements.

When a thin structure is considered, a big amount of work has
been developed by different communities under different points of
view. There exist two main ways of approximating shell prob-
lems: Finite element methods resulting from the discretization of
classical shell models (see [2,3]) and methods based on “degen-
erating a 3D solid finite element into a shell element” using some
kinematical assumption in the thickness direction (see [4]). We are
interested in the first case: we consider classical two-dimensional
(2D) shell models, namely, Naghdi equations, which are based on
Reissner—Mindlin hypotheses. To discretize them we use the
mixed interpolation of tensorial component (MITC) finite element
methods, introduced by Bathe and Dvorkin in [5], which are very
likely the most used in practice (see [4]).

For these MITC elements some mathematical analysis can be
found applied to Reissner—-Mindlin plate equations (see, for ex-
ample, [6,7]). In particular, we use the low-order MITC4 method,
which is the most common isoparametric quadrilateral element of
this family. The performance of this approach has been recently
tested for both plates and shells vibration problems [8].

To approximate the fluid we consider the displacement vector
field as primary variable, which presents some important proper-
ties like, for example, the fact that compatibility and equilibrium
through the fluid-structure interface satisfy automatically (see [9]).
Though, it is well known that the displacement formulation suf-
fers from the presence of zero-frequency spurious modes with no
physical meaning. We consider lowest-order Raviart-Thomas fi-
nite elements whose degrees of freedom (DOF) are located at the
element faces and represent the normal component of the field
through them.

Finally, on the fluid-solid interface we use a non-conforming
coupling: the kinematic constraint (i.e., equal normal displace-
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ment for fluid and shell), imposing it in a weak sense. Because of
this, the fluid and shell meshes do not need to be compatible on
the common interface.

In Sec. 2 we state the vibration coupled problem. In Sec. 3 we
treat the particular case of a plate. Finally, in Sec. 4, we apply the
method to calculate the vibrations of a thin cylinder full of fluid.

2 Statement of the Problem

Let () be the three-dimensional domain occupied by the fluid.
We consider that €} is the union of the 2D surfaces I'y,I';, ..., T,
and we assume that I'j is in contact with the shell, whereas the
remaining surfaces are in contact with perfectly rigid walls.

To describe the free small amplitude motions of the fluid, we
consider the displacement formulation; we denote by W
=(W,,W,,W;) the displacement fluid field.

For the shell, we assume that there exists a single chart ¢ that is
a one-to-one mapping, which applies a 2D domain I'" onto the
midsurface of the shell. Then, we consider the Naghdi shell
model, which is written in terms of the rotations @=(0,,0,) of
the fibers initially normal to the shell midsurface and the three-
dimensional vector field U=(U,,U,, Uz) which corresponds to the
displacement of the midsurface. Note that these vectors are func-
tion defined on the reference domain I'. Moreover, for simplicity
we suppose that the fluid is in contact with the midsurface I'.

The space of kinematically admissible displacements is denoted
by U and defined by

U:={(U,0,W):U, O, W sufficiently smooth, (Us° ¢
=W-n, and BC}

where BC symbolically denotes the prescribed essential boundary
conditions (see [3,4] for notation and details). The expression
(Uzo ¢~ )=W-n denotes the equality of the normal displacements
of both mediums.

Let a(-, -) be the bilinear form defined by:

al(U,0,W),(V,Y,2)] = A(W,Z) + £D’[(U,0),(V,Y)]
+tD™(U,V) + tkD’[(U,0),(V,Y)]

Here A is the fluid stiffness and the shell stiffness is written as the
sum of a bending term D’ a membrane term D™, and a shear term
D? as follows:

A(W,Z) = f prc? div W div ZdV
QO
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S\

E —
D'[(U,0),(V.Y)] ==f T)(aﬁ(U,@))XM(V,Y)V'det(a)dS
r

D™U,V) = J E“PNy s(U) Yy ,(V) Vdet(a)dS
I

D[(U,0),(V,Y)] = f G, (U, ®)pu(V.Y) det(a)dS
r

Moreover, c is the sound speed in the fluid, the tensors y, 7y, and
¢ are the well-known bending, membrane, and shear strain opera-
tors, respectively (see [2,4]). The tensors present in the stiffness
term E®PM* and G*P correspond to the material properties and
depend on Young’s modulus and Poisson’s ratio for the structure,
E and v, respectively. By k we denote a correction factor for the
shear term.

Then the coupled system in the frequency domain is the follow-
ing:

SP: Find w>0 and 0# (U,0,W) € U such that

al(U,0.W),(V.Y.2)]= o’b[(U,O.W),(V.Y.2)] V(V.Y.Z) el
The bilinear form b(-, -) is given by
bl(U,0,W),(V,Y,Z)] =:fp5(taaﬂUaVB+tU3V3
r

13
+ Ea"‘ﬂ@) QYﬁ) Vdet(a)dS

+J peW - ZdV
Q

where pg and py are the density of the shell and the fluid, respec-
tively. Here, the matrix (a“?) is the contravariant form of the first
fundamental form of the midsurface of the shell (see [2—4] for
further details); Greek indices range over 1 and 2. We use the
convention of summation over indices repeated up and down.

According to [10], to avoid typical spurious modes in the fluid-
solid coupled system (i.e., the eigenfunctions related to the fre-
quency w=0, arise because no irrotational constraint is imposed to
fluid displacements), the approximation of the fluid displacement
vector field is made by using Raviart-Thomas element. This ele-
ment discretizes the whole vector field instead of each of its com-
ponents separately (see [11], for further details).

We use MITC4 elements for the shell structure. This method is
based on discretizing the bending and membrane terms using the
usual isoparametric quadratic finite elements and relaxing the
shear term by using reduced integration.

Let us now specify this method in our context. Let {7,} be a
family of partitions in hexahedra of Q and {7}} be a family of
decompositions of I" into convex quadrilaterals. Here / stands for
the maximum diameter of the elements in K ’I}: or Ke 7, re-
spectively. Let K be the unit square reference element. We denote
by O, j(IA() the space of polynomials of degree less than or equal to
i in the first variable and to j in the second one. We set Q;(K)
= Qk’k(lg'). We denote by Fy the bilinear mapping of K onto K,
and we set Q(K):={p:poFxe QI(IA()}.

For the definition of admissible discrete variables, we impose
weakly the kinematic interface constraint because to do it strongly
would be too stringent (see [10]). The integrals to do this are
imposed on the fluid mesh faces in contact with the shell. More

precisely, let Cj:= {F: F is a face of the fluid meshes lying on I'},
we consider

1006 / Vol. 73, NOVEMBER 2006

Uy =1 (U, 0,,W,): Uplx € 01(K), Ok € 0(K)* VK

e, Wk e RTK) VK e T, f (Us, 0 ¢ H)dS
F

=f WhndSV]:e Chs and BC
F

where RT(K) denotes the lowest-order Raviart—-Thomas hexahe-
dron, whose degrees of freedom are the fluxes through each of the
six faces of K. Recall that BC denotes the prescribed essential
boundary conditions.

Then, the discrete variational problem reads:

SPy: Find w,>0 and 0# (U,,0,,W,) e U, such that

(U, 0, W), (V) Y. Z,)]
= wib[(Uh,(*)h, Wh),(Vh,Yh,Zh)] V (Vi Y1.2Z,) € U,

The bilinear form a(-,-) is a perturbed form of a(-,-); more
precisely, it comes from introducing in the shear term D° an ap-
propiated reduction operator ¢+—>Re. In this particular case, the
operator R is defined such that Re|xe Qp1(K)X Q) o(K)VK
€ ’Z}: (For details in the case of plate see, for example, [7], and for
cylindrical shell see [12]). Thus we obtain

Dz[(UM@h)’(Vh’Yh)]
‘:J GaB[RQD(Uhv®h):|a[R¢(VhsYh)]ﬁV’det(a)dV
Q

Let us emphasize that, for the shell structure, this MITC4 finite
element procedure is based on meshes that are constructed in a
reference 2D domain, and the numerical computations require an
extensive use of the chart ¢ (see [8] for details).

3 Plates

Now, we consider the case of a plate. The Reissner—Mindlin
formulation for plates can be seen as a special case of the Naghdi
shell model, where the plate transversal displacement terms ap-
pear separately from the in-plane terms. Thus the fluid-solid inter-
action can be expressed in terms only of the plate transversal
displacement, the fiber rotations, and the fluid displacements.
Then finite element space is

Uy = (U3, 0,,W)): Uyilg € 01(K), O,k € 0,(K)*V K

e, WlkeRTK)VK e7T, f Uy, dS
F

=J W), - ndS, and BC
f
Then to compute the free vibration modes we must solve the

problem (see [6,13]):
PPy Find w,>0 and 0% (Us,,0,,W,) e Ur such that:

t3ﬁ(®h,Yh) + th R(VU}h - ®h) . R(VV3h - Yh)dS
r

+ J ppcz div Wh div Zthz wﬁp(tf U3hV3hdS
Q r

3

t
+ Ef ®h . Yh)dS"' f pFWh . ZthV (V3h?Yh’Zh) € Z/{},}l)
r Q
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6m Here k:=Ek/2(1+v) is the shear modulus, meanwhile the bi-

= t=0.5m i i
Am Plate linear form a is defined by

2
a(6,.Y,) = ﬁ f S (1= e(®)ey(Y))
T

i,j=1

l ] +vdiv®,divY, |dS
Rigid walls

where &;; denotes the components of the linear strain tensor.

Fig. 1 A 3D cavity filled with fluid Recently, this coupled problem has been mathematically ana-
lyzed in [13], where hexahedra Raviart-Thomas elements for the
fluid and MITC4 elements for the plate were used. Optimal order
N I I D U R error estimates have been obtained for the solution of PPy, which
N T T SR L N I e T are valid uniformly on the plate thickness ¢. These results have
tea S (A N S e T T T been, previously, proved for MITC3 and tetrahedral Raviart—
N RS | LTl T Thomas elements in [6].

s ‘ gl T We have considered a steel 3D cavity completely filled with
water with all of its walls being perfectly rigid, except for one of
them which is a plate. The geometric parameters are given in Fig.
1. We consider the physical parameters of plate and fluid: pp
=7700 kg/m>, E=1.44X10"" Pa, »=0.35, pp=1000 kg/m>, ¢
=1430 m/s, k=5/6.

Table 1 shows the frequencies of the three lowest-frequency
vibration modes computed on different meshes. Here, N stands for
the number of layers of elements for the fluid domain in the ver-
tical direction. The number of layers in the other two direction
being 2N and 3N, respectively. The plate meshes are induced by
the fluid meshes. We also include more accurate values computed
by extrapolating those obtained with the most refined meshes.

Table 2 shows the results obtained for the lowest-frequency
vibration mode for plates of different thickness. To allow for com-
parison we scale the frequencies. Note that the convergence be-
havior does not depend on the plate thickness.

Figures 2 and 3 show the deformed plate and the fluid pressure
field for the two first modes in Table 1.

04 o] i, e
O s
RN,

-0.24:
~03\ .

B i

_0_5\; L

4 Shells

In this section we present numerical results corresponding to
the solution of problem SPy in the case of circular cylindrical
shells filled with fluid. First, to validate our code, we compare the
results with those in [14]. As a second test, to show the clear
advantage of using a 2D model for the structure, we apply our
method to a problem considered in [15].

By using cylindrical coordinates, we are led to a reference do-
main Q=[0,27] X [0,H], with H being the height of the cylindri-
cal shell. We have used uniform meshes of rectangles with 2/V+2
and 2! element edges on each side of (), respectively (see Fig.

Fig. 2 Vibration mode of frequency w;. Deformed plate and
fluid pressure.

Table 1 Lowest vibration frequencies of a steel plate in contact with water

Mode N=4 N=5 N=6 N=17 Exact
o, 745.5411 744.6309 744.1355 743.8364 743.002848
w, 1126.6920 1123.8563 1122.3137 1121.3828 1118.786303
w; 1354.1576 1351.3917 1349.8881 1348.9811 1346.471972

Table 2 Scaled lowest frequency for plates of different thickness coupled with fluid

Thickness N=4 N=5 N=6 N=17 Exact
0.5 745.54 744.63 744.13 743.83 743.0028
0.05 747.51 746.63 746.15 745.87 745.0697
0.005 747.53 746.65 746.18 745.89 745.0913
0.0005 747.53 746.65 746.18 745.89 745.0915
Journal of Applied Mechanics NOVEMBER 2006, Vol. 73 / 1007
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Fig. 3 Vibration mode of frequency w,. Deformed plate and
fluid pressure.

4). For a given mesh (i.e., a fixed N), we denote by (DOF) its total
number of degrees of freedom. We have used three meshes in both
experiments, those corresponding to N=3 (4956 DOF), N=4
(11168 DOF), and N=5 (21100 DOF).

In the first case, we have considered a clamped circular cylin-
drical thin shell completely filled with a compressible fluid (see
Fig. 5). The dimensions of the shell are radius 0.1 m, height
0.3 m, and thickness 0.002 m. The physical properties of the ma-

thickness
compressible fluid

Z 2

X

Fig. 5 Used meshes for N=3

terials, which correspond to aluminum and water, are the follow-
ing: pp=2700 kg/m3, E=69X 10° Pa, v=0.3, pp=1000 kg/m?,
c=1483 m/s, k=5/6.

Table 3 shows the computed lowest vibration frequencies. They
are ordered according to their circumferential and axial mode
numbers n and m, respectively. This table also includes “exact”
values of the vibration frequencies obtained by extrapolating the
frequencies computed with these meshes. In the last column, we
include the results reported in [14], which are obtained with an
analytical method based on a finite Fourier series expansion. Note
that in all cases the difference between the exact values and those
in [14] are smaller than 3.0%.

It can be seen from Table 3 that the method appears locking
free for the computation of vibration modes with low circumfer-
ential number (n=0 and n=1). Instead, for larger circumferential
numbers (n=2, n=3, etc.), the computed values of the vibration
frequencies are close to the exact ones only for highly refined
meshes. This suggests that the method locks for circumferential
numbers greater than 1 in this case. This observation agrees with
the results reported in [8] for a cylindrical shell in vacuum.

For the second test, we have considered a moderately thick
circular cylinder clamped by both ends and filled with fluid. We
have used the same material properties as in the example of the
plate from the previous section, i.e., a steel structure filled with
water. The height of the cylinder is 3.5 m, its inner diameter
length is 2.0 m, and its thickness 0.1 m.

Table 4 shows the lowest vibration frequencies computed with
the method described in this paper. We have used the same meshes
as in the previous example. We denote by wi, and w} the shell and

Fig. 4 Cylinder filled with fluid

1008 / Vol. 73, NOVEMBER 2006
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Fig. 6 Vibration mode of frequency w!. Deformed shell and
fluid pressure.

fluid mode, respectively. We also include the exact values of the
vibration frequencies obtained by extrapolating the computed fre-
quencies. In the last column we include the discrepancy (in per-
cent) between the values computed on the finest mesh and the
exact values. Let us remark that wf is a shell mode with circum-
ferential number n=2; this is the reason why the discrepancy is
larger for this mode.

Fig. 7 Vibration mode of frequency ). Deformed shell and
fluid pressure.

To allow for comparison, we reproduce in Table 5 some results
reported in [15]. In this reference, the same problem has been
solved, but considering the structure as a three-dimensional elastic
solid. The total numbers of DOF used in each mesh are also given
in the table. Let us recall that the corresponding numbers of DOF

Table 3 Vibration frequencies for a thin cylindrical shell filled with fluid

Mode N=3 N=4 N=5 Exact [14]
n=1, m=1 1020.3491 1013.3759 1010.1519 1004.4146433 1007.5
n=1, m=2 1727.6673 1713.7354 1707.3111 1695.9488040 1699.5
n=2, m=1 841.9886 792.0624 768.7160 726.1533379 728.6
n=2, m=2 1539.8293 1499.4937 1481.1173 1449.6221483 1453.9
n=3, m=1 956.2804 793.6864 712.6670 539.6201194 553.0
n=3, m=2 1433.4752 1310.1966 1253.4812 1153.8148361 1156.2
n=4, m=1 1337.5487 1023.6297 863.8526 502.6526781 516.8
n=4, m=2 1631.5230 1355.9940 1226.7993 989.8001371 985.5
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Table 4 Vibration frequencies for a moderately thick cylindrical shell filled with fluid

Mode N=3 N=4 N=5 Exact Discrepancy
! 1162.5606 1160.2396 1159.1665 1157.2567655 0.165%
w}é 2288.0000 2270.9296 2263.1405 2249.6966024 0.597%
o] 1213.3284 1204.3192 1200.1554 1192.8062219 0.616%
w? 1014.5626 948.2604 916.9248 858.3380240 6.825%

Table 5 Vibration frequencies reported in [15]

[4] Chapelle, D., and Bathe, K. J., 2003, The Finite Element Analysis of Shells:
Fundamentals, Springer, Verlag.
[5] Bathe, K. J., and Dvorkin, E. N., 1985, “A Four-Node Plate Bending Element

Mesh 1 Mesh 2 Mesh 3 Based on Mindlin/Reissner Plate Th d a Mixed Interpolation,” Int. J
ased on Mindlin/Reissner Plate Theory and a Mixed Interpolation,” Int. J.
Mode (8544 d.o.f.) (57720 d.o.f) (183840 d.o.f.) Numer. Methods Eng., 21, pp. 367383,

[6] Durén, R., Hervella-Nieto, L., Liberman, E., Rodriguez, R., and Solomin, J.,
(U% 1188.4430 1166.6490 1158.6870 2000, “Finite Element Analysis of the Vibration Problem of a Plate Coupled

o} 2348.5520 2281.9990 2255.3540 With a Fluid,” Numer. Math., 86, pp. 591-616.
w! 1311.8430 1237.6660 1219.2640 [7] Durédn, R., Herndndez, E., Hervella-Nieto, L., Liberman, E., and Rodriguez,
wsz 1701.5000 1153.6710 1009.3770 R., 2004, “Error Estimates for Low-Order Isoparametric Quadrilateral Finite

“

of the meshes in Table 4 are 4956, 11,168, and 21,100, respec-
tively. The impressive advantage of using the present 2D model
can be clearly observed.

Finally, Figs. 6 and 7 show the deformed shell and the fluid
pressure field for the two lowest-frequency vibration modes in
Table 4.
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New Mass-Conserving Algorithm
for Level Set Redistancing on
Unstructured Meshes

The level set method is becoming increasingly popular for the simulation of several
problems that involve interfaces. The level set function is advected by some velocity field,
with the zero-level set of the function defining the position of the interface. The advection
distorts the initial shape of the level set function, which needs to be re-initialized to a
smooth function preserving the position of the zero-level set. Many algorithms re-
initialize the level set function to (some approximation of) the signed distance from the
interface. Efficient algorithms for level set redistancing on Cartesian meshes have be-
come available over the last years, but unstructured meshes have received little attention.
This presentation concerns algorithms for construction of a distance function from the
zero-level set, in such a way that mass is conserved on arbitrary unstructured meshes.
The algorithm is consistent with the hyperbolic character of the distance equation
(IIVdll=1) and can be localized on a narrow band close to the interface, saving comput-
ing effort. The mass-correction step is weighted according to local mass differences, an
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improvement over usual global rebalancing techniques.
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1 Introduction

The level set method (LSM) has become a popular choice for
numerically handling problems with interfaces. The basic idea is
to represent the interface (which we will denote by S) as the
zero-level set of a level set (LS) function ¢. The normal to the
interface thus satisfies

V¢
=— 1
)= T g W
for all x such that ¢(x)=0. The curvature of S can also be ob-
tained from ¢, i.e.
Ve )
=divn =di 2
k(x)=divn 1V<”V¢” (2)

It is evident that, if B is any vector field such that c¢,=f-n is the
interface speed, then ¢ must satisfy the LS equation

¢ -
o TB V=0 3)

at least locally at S.

In multiphase flows, S represents the boundary between two
immiscible fluids. Let us assume that just two fluids (A and B) are
present inside a domain (2, so that the region occupied by fluid A
is

0, ={x € Q. ¢(x) > 0} (4)

If B (assumed smooth enough) is solenoidal inside (4, then the
volume of fluid A (denoted by |Q,4|) will be conserved since
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dlQ
M:fc,,dl":fﬂ-ndl“:f divBdQ=0 (5
dt s s O,

It is important to remark that though Eq. (3) is a transport
equation, it does not arise from a conservation law. Usual methods
to deal with Eq. (3) have been designed to conserve mass when ¢
is a density; i.e., they conserve [,¢pdw for some family of subdo-
mains . This conservation property is, in fact, useless in LS
formulations, since it does not imply that the zero-level set of ¢
will propagate at the correct speed, and thus in general mass of
each fluid will be created or destroyed at the interface due to
numerical error. Please notice that, strictly speaking, it is the vol-
ume of each fluid that is created or destroyed. We, however, speak
of mass conservation (implicitly assuming the fluids to be homo-
geneous and incompressible) to stress the physical significance of
the matter we are addressing.

Much effort has lately been devoted to improving the LSM so
as to minimize numerical inaccuracies in the zero-level set propa-
gation [1-7]. The underlying idea is that if the initial data ¢(x)
=¢(x,1=0) are smooth in a neighborhood of S, then any high-
order numerical method for Eq. (3) will propagate the interface
without significant error from #=0 to some time #=T provided that
the mesh is fine enough. The time bound 7 arises because, in
general, ¢ will not remain smooth indefinitely and will thus be
more prone to numerical inaccuracies.

The most popular approach for initializing ¢ as a function that
is smooth close to S is to choose ¢ as the signed distance d to the
interface. Of course, after some simulation time (smaller than 7)
the function ¢ is re-initialized (or “redistanced”), so that LS dis-
tortion is kept under control. This re-initialization was originally
introduced by Chopp [8] to avoid spurious phenomena at bound-
aries when computing minimal surfaces with the LS formulation.

In the present paper we describe a general method for comput-
ing d in unstructured meshes, which is related to fast-marching
methods developed for Cartesian grids [9,10]. The method is de-
veloped for simplices (triangles in two dimensions (2D), tetrahe-
dra in three dimensions (3D)), and is consistent with the hyper-
bolic character of the distance equation [[Vdll=1.

However, no matter how accurately d is computed at the mesh
nodes, the function ¢ which coincides with d at the nodes will not
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preserve the exact location of the interface. This may result in an
additional spurious local mass loss or gain, which is added to that
coming from numerical errors in the solution of Eq. (3). Almost
all re-distancing algorithms thus involve some sort of mass-
correction step [5,11,12]. Our method includes one such step that
is local and involves no adjustable parameter.

We are leaving aside many other sources of error that play a
role in LS formulations of multi-fluid flows. Among others, the
numerical difficulty of correctly computing the transport velocity
P close to the interface, where density and viscosity are discon-
tinuous. Very comprehensive accounts of the LSM for fluid inter-
faces are available [13,14].

2 Redistancing Algorithm

2.1 Preliminaries. In this section we recall some elementary
properties of distance functions stated in the form that adapts best
for distance-computing algorithms.

We consider an arbitrary triangulation 7, of the domain (),
where £ is a characteristic mesh size, and the associated space V),
of continuous functions that are linear inside each simplex. Let
¢y, € V), be a function, and let S be its zero-level set. Our aim is to

find a function ¢, € V}, which approximates the signed distance
function d to S, defined for any closed set S as

d(x) = sign[(ﬁh(X)]mi‘rg1 lx -yl (6)
ye

This function satisfies [[Vd|ll =1 almost everywhere in (), but does
not, in general, belong to V,,. In what follows we will assume () to
be bounded, and all curves (in 2D) or surfaces (in 3D) to be
compact (adding the adherence points if the curve or surface in-
tersects the boundary of ().

The algorithm we consider is based on the following basic
property of the distance function to a compact set S:

PROPOSITION 2.1. Let C be a surface in R" (of co-dimension 1)
which divides R" into two open sets, o* and w~, such that SC w™.
Then, for any y € w*

ld(y)| = mig[ly = x| +|d(x)[] ™)

Proof. Let s € S satisfy |d(y)|=|y—s|, and let a be the intersec-
tion of the segment ys with C (which exists because C divides R").
Notice first that |d(a)|=|a—s| because, if there existed a point w
such that |a—w| <|a—s|, then

y-wi<ly-al+la-w|<ly-al+la-s[=ly-s[=]db)|

in contradiction with the definition of |d(y)| as the minimal dis-
tance from y to any point in S. Defining now

&) =mig[LV — x| +d(x)[] (8)
it is easy to show that &y)=<|d(y)|. In fact
|d)| =y —s|=ly—a| +|a-s|=|y -af +|d(a)]
= mig[ly —x[+d(x)|]= &)

It remains to show that &(y) =|d(y)|. To see this, let z € C satisfy
&y)=|y—z| +|d(z)| and let w € S satisfy |d(z) | =|z—w|. Then

o) =l -zl +k-wl=ly-w|=|dp)|

and the proof is complete. O

The previous proposition shows that the distance function can
be computed “layer after layer,” using the values computed on
some surface C to compute the values of d at points that lie “out-
side” C. With these new values, one can redefine C as the new
boundary of the subdomain in which d is already known, and in
this way march outwards from S until d is known everywhere.
The idea of a marching method [9,10] has been made evident in
the previous argument.
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But what happens when one considers perturbations of the
original problem? We have already recalled that the exact function
d does not belong to V),. Let P be the set of nodal points that are
adjacent to the zero-level set of ¢, in the sense that they are
vertices of simplices inside which ¢, changes sign. If one makes

the simple assignment ¢,(X)=d(X) for all X € P, there is a vol-
ume loss (or gain) which could render the algorithm useless for
physical simulations. To be precise, assigning ¢,(X)=d(X) results
in [y, (0)<0dX # [, (x)<odx.

The values of ¢, at the nodes adjacent to the zero-level set must

thus be “adjusted” so as to preserve volume, and the function ¢
must be calculated at the remaining nodes using the adjusted val-

ues at P. In general, this adjusted distance ¢, linearly interpo-
lated from the nodal values, is not the distance to some adjusted
set S’. This is a perturbation of the problem considered in Prop.
2.1, and it is appropriate to adapt the result to consider this case.
Simultaneously, we will rephrase the result in a way that moti-
vates the algorithm we are using (which is not a marching
method).

PROPOSITION 2.2. Let S be a closed set in R" and let  be a
continuous, positive function on S. Let us define

ny) = mig[l//(X) + |y —x]] )

(notice that 7(y)=|d(y)| if y=0), and let y be arbitrary in R"\S.
Then, for any surface C (as in Prop. 2.1) such that SC w™ and
ye ot

n(y) = mig[n(x) +y —x[] (10)
Proof. Let
§(y)=mig[77(x)+Lv—x\] (11)

We must prove that 7(y)=£(y). Let s verify 5(y)=i(s)+|y—s
and let a be the intersection of the segment ys with C. From Eq.

©)

@) < yls) +la—s| = yis) +y - s| - ly —a| = 7(y) - |y - a
implying that

s

7(y) = nla) +ly —a| = &(y)

It remains to prove that 7(y) < &(y). Let z € C satisfy &(y)=n(z)
+|y—z| and let w € S satisty 7(z)=y(w)+|z—w|. Then

) = hw) + [z =wl+ly —z| = g(w) + ly - w| = 7(y)
which completes the proof. (|
Remark 2.3. In the proof above it is not difficult to see thaty, w,
and z are aligned. Let b be the intersection of the segment yw with
C. If b#z, then

Ey)=ow) +y —z|+[z—w| > (w) + b —w|+]y - b|
= 5(b) + |y - b|

in contradiction with Eq. (10). The alignment implies that, if s is
as before such that 7(y)=(s)+|y—s|, then for any z in the straight
segment ys, 7(z)=As)+|z—s|. The curves that join each point of
the domain with the minimizing argument of the right hand side of
Eq. (9) are straight lines (“rays,” by analogy with optics).

Remark 2.4. 1t is also possible to prove that, at points where 7
is differentiable, |[V#|=1 in much the same way as |Vd|=1, which
is a particular case corresponding to =0. To see this, first notice
that along the rays the directional derivative of 7 is equal to one.
It remains to prove that along a direction perpendicular to the
local ray direction the derivative vanishes, assuming that it exists.
Let y and s be as before, and let D be a unit vector orthogonal to
the segment ys. Because of the orthogonality
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1 € .
Ly+eD—s\=|y—s|+5b7_s‘ +0O(€")
Now, using also Eq. (9)
7y + €D) < Yls) + |y + €D —s| < yls) + [y - 5| + O(&)
=7(y) + O(€)

From this it is immediate that, if # is differentiable at y, then its
derivative along D must vanish.

2.2 Computing the Distance. It is clear that the sign of &,
adds no difficulty, since it simply equals that of ¢;,. We will thus

describe the calculation of ¢, just on €4, where ¢, is positive.
Let P be the set of nodal points that are adjacent to the zero-level
set of ¢, in the sense that they are vertices of simplices inside
which ¢, changes sign, and let P, be the subset of PP with positive

values of ¢, (i.e., P,=PNQ,). We assume ¢, given on P, (its
calculation is described later). The rest of the nodes in (), are
denoted by R 4.

Step 1 (Initialization). There exist several options for initializ-
ing ¢, over R,.

(a) Let I be a node in Ry, and let C; be the set of nodes
connected to 7, I not included (notice that C;C (P, UR,)). The

initial guess we use for ¢, is a distance-along-edges approxima-
tion, i.e., the unique function satisfying

(X)) = l;niél[(’;h(xl) +1X;-X/[]

In the process of initializing ¢, with this option, the elements can
be ordered so as to render the algorithm more effective.

(b) If one wants to calculate ¢, up to a distance & from S, one

simply initializes ¢, as equal to & over R,.
Step 2 (Evaluation). The simplices in the mesh are swept until

¢y, no longer changes. For each simplex, and for each node I of

the simplex (coordinates denoted by X,), ¢, is interpolated lin-
early on the opposite face F;, using the current values at the

nodes. Then, a tentative new value 7; of ¢, at node I is calculated
as
= min[ B;(x) + |X; - x|] (12)
xek;
Finally, ¢,(X,) is updated to the value 7, if the current value is

greater than ;.
Equation (12) is the key operation in the computation of the

distance. It is computed exactly. This is not difficult since ¢, is a
linear function and the minimum is calculated over F;, which is a
simplex (a segment in 2D, a triangle in 3D). The possibilities of
the minimum being attained in the interior of F; or at its boundary
have of course to be considered (in 3D, this latter case decom-
poses in turn into attaining the minimum either inside an edge or
at a vertex). It can be shown that the proposed algorithm, like
others discussed, for example, by Osher and Fedkiw [14], cor-
rectly approximates more complex distance problems such as
computing geodesics, optical paths with varying refraction index,
and distances around obstacles.

Remark 2.5. Notice that the discretization error in the distance
computation is a direct consequence of the linear interpolation of

&, on F, from the values computed at the nodes. Since the dis-
tance is a smooth function almost everywhere, this interpolation
error is of order 1% (with i the mesh size) on each segment (in 2D)
or triangle (in 3D). The error propagates away from the interface,
being thus of order 42 at distances of the order of the mesh size
from the interface, and of order & at distances comparable to L
(with L the domain size).

Journal of Applied Mechanics

2.3 Volume Preservation. The key in preserving volume in
the algorithm is the correct computation of ¢, on the set of nodes
adjacent to the interface (denoted by P). Let us define K(¢y,) as
the set of simplices in which ¢, changes sign, so that SC K(¢,,).

The objective is thus to calculate ¢, such that it approximates the
signed distance d while at the same time preserving the volume

Vi) = H(ey(x))dx (13)

K(y)
where H is the Heaviside function (H(s)=1 if s>0, H(s)=0 oth-
erwise). The contribution to this volume of each simplex K

e K(dy) is

VK(‘f’h):f H(¢y(x))dx (14)
K

The algorithm is again structured in a sequence of steps.

Step 1 (Initialization). The function ¢, is initialized, over the
nodes in P, to a first estimate (?52, calculated as the true signed
distance to S.

Step 2 (Evaluation of a simplex-wise correction). In general, the
initialization ends up with a function (‘;;2 for which VK({Z;?)

# Vi(ey,), though the difference is quite small. We then solve, on
K, the nonlinear system

Ry(Ag) = VK(Jﬁ? +Ag) = V() =0 (15)

to determine which (constant over K) value should be added to (}2
to achieve local volume preservation. The values Ay are computed
using a simple secant algorithm A;?”:A;?—R;?(A;?
—Az_l))/(RZ)—Rz_l)), which converges in very few steps, and
stored.

Step 3 (Node-wise correction). From the previous step,
simplex-wise values that should be added to ¢ to preserve vol-
ume for all K € K(¢,) are available. We now compute a node-
wise direction ¢, by averaging over the simplices that share a
node. Let / be a node in P, and let N; be the number of simplices
in K(¢;) that contain I, then we define

1
wX)=— > Ag (16)
I KeK(dy)
IeK
The value of ¢, on P is finally calculated over P as
bi=d+Cyy, (17)
where C is the value of C such that
f H[(x) + Cify(x)]dx = H[¢y(x)]dx  (18)
K¢y K(pp)

The nonlinear system for C is again solved by a simple secant
method and converges in very few iterations.

Remark 2.6. The mass correction Eq. (17) is of the same ge-
neric form as those proposed in other papers, the difference being
in the choice of ¢,. A common approach is simply to propose

=1, so that a uniform value is added to 2132 to correct the mass
[15]. This is, however, not optimal, since mass loss/gain is not
uniform over the interface. In fact, the loss/gain in mass tends to
concentrate in regions of higher curvature. In other approaches the

function ¢ is obtained as the steady state of the heuristic equation

‘Z_‘f +S()(VP-1)=0, H(x,0) = (x)

in which S is a sign function or a suitably smeared approximation
thereof. We refer to the book by Osher and Fedkiw ([14], p. 65),
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for a thorough discussion on re-initialization procedures. Our ap-
proach is similar to that proposed by Sussman and Fatemi for
structured grids [11], in that it proposes a function ¢, that has no
free parameters and concentrates the correction locally where the
loss/gain in mass is higher, thus automatically accounting for cur-
vature, mesh distortion, etc.

3 Numerical Examples in Pure Transport

In this section we couple the redistancing algorithm with a nu-
merical method for transport. The numerical method we use for
Eq. (3) is a streamline upwind Petrov-Galerkin (SUPG) finite el-
ement method [16], with Implicit-Euler (#=1 below) or Crank-
Nicolson (#=0.5) treatment of the time derivative.

Let V), be the space of piecewise linear functions on the trian-
gulation 7;, of ). To make explicit the numerical method, let ¢,
e V,, denote the numerical solution at time r=nAt, where At is the
time step. Then, assuming ¢} given, ¢*' is obtained as the
unique solution in V, of the discrete variational formulation

n+l_g 7
f [hA—t(‘ﬁh)J,ﬁ.v(g (1= 0G(¢)) |(v)
Q

+7B-Vu,) (dx =0 (19)
for all v, in V,. In Eq. (19) we have introduced the mapping
G:V,—V,, which allows us to incorporate the re-initialization
step. We thus compare the plain algorithm (G(¢,)=¢),) to the
re-initialized one (with or without the mass-correction substep),
G(¢y)=,. Also in Eq. (19), 7 is the SUPG characteristic time,
which we calculate as 7=hg/(2|B|). The local streamwise ele-
ment size hg is defined as one half the length of the element in the
direction of .

3.1 Zalezak’s Disk. The problem we consider is the rigid
body rotation of the so-called Zalezak’s disk, a usual benchmark
for level set formulations [5,11]. The domain is Q=(0,1)
X (0,1). The initial data correspond to fluid A inside a slotted
circle centered at (0.50,0.75) with a radius of 0.15. The slot
length is 0.25 and its width 0.05. The velocity field is given by

__T
T 314

so that the disk completes one revolution every 628 time units.

In addition, we calculate the accuracy of the interface location
using the L; norm of the error between the corresponding charac-
teristic functions [5]:

B (0.5 = xp,x; —0.5)

1
El = Zf |H( ¢expected) - H( ¢Compu‘€d)‘dx (20)
Q

where L is the length of the expected interface. This integral is
calculated exactly. We used a uniform unstretched triangulation of
80,000 elements for all tests. The distance algorithm was set to

compute ¢, up to a distance of 0.04 from the zero-level set (Zale-
sak’s disk).

Figure 1 shows an example of the evolution of the disk as it
turns around the center of the domain. Four different instants are
plotted (#,=0, t,=157, t3=314, and t,=471), superposed to the
exact solution to put into evidence the distortion of the iso surface
due to transport alone.

We now turn to quantitative comparisons of the different algo-
rithms. In Fig. 2 we show the evolution of the disk’s volume and
the L; distance in time for Ar=0.5 and #=0.5. This figure also
contains a comparison between initial and final states.

Algorithms “Plain,” where no-re-initialization is present, and
“Re-initialized+MC,” where re-initialization is done with the
mass-correction substep, show a similar behavior. This is mainly
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0.8 - 1
0.6 b
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Fig. 1 Zalesak’s disk at four different instants: t;=0, t,=157,
t;=314, and t,=471. The first one corresponds to the initial
state. A uniform unstructured unstretched grid of 80,000 ele-
ments was used. At=1 and 0=0.5 was set in the transport
algorithm.

because the time step and mesh size are small enough for the
transport of the level set to be done without significant error.
However, the case Re-initialized, in which the mass-correction
substep is omitted, shows that the errors introduced in the re-
initialization substep accumulate, destroying the global mass con-
servation. From the figure we can see that these errors are located
in zones with greater curvature. Some authors (e.g., [9], p. 140)
recommend to restrict redistancing to a minimum because of this
phenomenon. The example just described shows that our local
mass-conservation procedure allows redistancing to be safely per-
formed at every time step. We recall that, when the mass-
correction substep is performed, the re-initialization procedure
strictly preserves the volume. The changes that nevertheless arise
occur at the transport substep, and our algorithm does not attempt
at solving them.

The second example was done with a fully implicit scheme
replacing the Crank-Nicolson one presented above. The idea is to

0.059 T T T T T T
Plain
0.058 <77 N R
Lo / _
0.057 AN Reinitialized + MC
0036 - -

0.055 -

0054 | / -

0.053 | Reinitialized \\\\ B

Volume

E,=53E-4

0052 - Reinitialized + MC

0.051 ‘ : s s ‘ =
0 100 200 300 400 500 600 700 —
Time I

! |
0.01 : : . , ‘ -
0.009 + -
0.008 - WS
0.007 I Reinitialized e - Ey=12E-3
0.006 |- - Reinitialized
0.005 1 -
0.004 + -
0.003 F -
0.002 - o Reinitialized + MC
P AN /
0.001 F -~ ) ) . B
P . e —
0 : ; ; ;
0 100 200 300 400 500 600 700
Time

TN

Plain - 5’( {
.

E,= 9.9E-3

L1 distance

Fig. 2 Zalesak’s disk: Volume and L;-distance evolution for
At=0.5 and #=0.5. Comparison between initial and final states

(after one revolution). Domain is a uniform unstructured un-
stretched grid of 80,000 elements.
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Fig. 3 Zalesak’s disk: Volume and L;-distance evolution for
At=0.5 and fully implicit scheme (#=1). Comparison between
initial and final states (after one revolution). Domain is a uni-
form unstructured unstretched grid of 80,000 elements.

investigate the effects of more diffusive transport algorithms. Fig-
ure 3 shows the evolution of the volume and of the L, distance in
time for Ar=0.5.

From the comparison between initial and final states, it is evi-
dent that the diffusive behavior is again concentrated in zones
with greater curvature. This is consistent with the increase of the
volume in the case Plain, since the slot quickly disappears. In case
Re-initialized+MC the damage to the slot is greatly reduced, also
reducing the global mass change. In addition, the geometry is
preserved much more accurately.

Finally, the last test investigates the effect of re-initialization in
simulations with large time steps. In Fig. 4 we show the evolution
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Fig. 4 Zalesak’s disk: Volume and L;-distance evolution for
At=2 and Crank-Nicolson scheme. Comparison between initial
and final states (after one revolution). Domain meshed with a
uniform unstructured unstretched grid of 80,000 elements.
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Fig. 5 Notched sphere: (a) Volume evolution for At=1 and
fully implicit scheme. (b) Comparison between initial and final
states (t=157) for the runs with and without reinitialization.

of the volume of fluid and the L; distance in time for Ar=2
(Crank-Nicolson scheme).

For algorithm Plain the total mass loss is 1.35%, while for
Re-initialized+MC the amount of mass loss is 0.19%. From the
comparison between initial and final states we see again that the
re-initialization step helps preserve the original geometry.

3.2 Notched Sphere. This test is the three-dimensional ana-
log of Zalezak’s disk. The sphere’s radius is 0.15, from which a
sector of width 0.05 and depth 0.20 has been removed. The ve-
locity field is the same rigid rotation as before. We use an unstruc-
tured uniform isotropic mesh of 2.76 X 10° tetrahedra, with the
same mesh size as in the 2D case. The final time is =156 (a
quarter of a turn) with a time step Az=1 and #=1.

We compare here two runs, Plain and Re-initialized+MC. The
re-initialization, performed at each time step, includes the mass-
correction step (otherwise the results are extremely bad). In Fig.
5(a) we compare the evolution of the volume along the two runs.
Mass conservation is comparable for the two runs, but part 5(b) of
the same figure shows that the shape is much better preserved in
the re-initialized run.

4 Conclusions

In this work we developed an algorithm to compute the signed
distance function on general unstructured meshes in two and three
dimensions. A mass-correction step, which is weighted according
to local mass differences, is proposed as part of the general algo-
rithm in order to maintain the total mass during the re-
initialization step.

We reported the well-known Zalezak’s-disk and notched-sphere
tests to assess the behavior of the algorithm in transport cases. We
showed that a mass-correction step during the re-initialization is
indeed necessary. Moreover, this step must be done in a local
sense in order to preserve the original geometry. In addition, we
observed that when numerical methods used to solve the transport
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equation have significant errors (e.g., excessive diffusion) the re-
initialization step helps to both preserve the geometry and to re-
duce global mass loss/gain.

Let us remark, however, that re-initialization techniques only
work if the mesh is fine enough. For too-coarse meshes, in which
the error is dominated by the spatial discretization of the transport
step, re-distancing does not provide significant improvement.
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Numerical Simulation
of Transient Free Surface Flows
Using a Moving Mesh Technique

In this work, transient free surface flows of a viscous incompressible fluid are numerically
solved through parallel computation. Transient free surface flows are boundary-value
problems of the moving type that involve geometrical nonlinearities. In contrast to more
conventional computational fluid dynamics problems, the computational flow domain is
partially bounded by a free surface which is not known a priori, since its shape must be
computed as part of the solution. In steady flow the free surface is obtained by an
iterative process, but when the free surface evolves with time the problem is more difficult
as it generates large distortions in the computational flow domain. The incompressible
Navier-Stokes numerical solver is based on the finite element method with equal order
elements for pressure and velocity (linear elements), and it uses a streamline upwind/
Petrov-Galerkin (SUPG) scheme (Hughes, T. J. R., and Brooks, A. N., 1979, “A Multi-
dimensional Upwind Scheme With no Crosswind Diffusion,” in Finite Element Methods
for Convection Dominated Flows, ASME ed., 34. AMD, New York, pp. 19-35, and
Brooks, A. N., and Hughes, T. J. R., 1982, “Streamline Upwind/Petrov-Galerkin Formu-
lations for Convection Dominated Flows With Particular Emphasis on the Incompress-
ible Navier-Stokes Equations,” Comput. Methods Appl. Mech. Eng., 32, pp. 199-259)
combined with a Pressure-Stabilizing/Petrov-Galerkin (PSPG) one (Tezduyar, T. E., 1992,
“Stablized Finite Element Formulations for Incompressible Flow Computations,” Adv.
Appl. Mech., 28, pp. 1-44, and Tezduyar, T. E., Mittal, S., Ray, S. E., and Shih, R., 1992,
“Incompressible Flow Computations With Stabilized Bilinear and Linear Equal Order
Interpolation Velocity-Pressure Elements,” Comput. Methods Appl. Mech. Eng., 95, pp.
221-242). At each time step, the fluid equations are solved with constant pressure and
null viscous traction conditions at the free surface and the velocities obtained in this way
are used for updating the positions of the surface nodes. Then, a pseudo elastic problem
is solved in the fluid domain in order to relocate the interior nodes so as to keep mesh
distortion controlled. This has been implemented in the PETSc-FEM code (PETSc-FEM:
a general purpose, parallel, multi-physics FEM program. GNU general public license
(GPL), http://www.cimec.org.ar/petscfem) by running two parallel instances of the code
and exchanging information between them. Some numerical examples are presented.
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sloshing in the tank. These hydrodynamic pressures result in
added masses which can duplicate forces and moments exerted by
a liquid on a vibrating tank, as shown in the computations re-
ported in Ref. [6]. Sloshing in a more general context is exten-
sively reviewed by Biswal et al. [7].

From a numerical point of view, several techniques have been
developed for the solution of free surface flows as initial value
problems. These techniques are roughly classified by Shyy et al.
[8] as Eulerian, Lagrangian, or mixed Eulerian-Lagrangian.

In Eulerian-like (volume-tracking) approaches (see Fig. 1), the
mesh remains stationary or moves in a predetermined manner.
Moreover, the free surface is not explicitly tracked but it is recon-
structed from other field properties such as the fluid fractions.
Then, the fluid moves in/out of the computational flow domain.
Under this scope, Aliabadi and Tezduyar [9] perform a numerical

1 Introduction

Free surface flows are very common in engineering problems.
They include, for instance, the sloshing case which appears in
vehicle, ship, or aerospace engineering, when the back-and-forth
splashing of a liquid fuel in its tank can lead to problems of
stability and control in ground or launch vehicles. Another case is
the sloshing in a liquid storage tank subjected to seismic action
when high impact loads on the tank roof and walls can damage the
liquid storage tank. Early simulations of the liquid sloshing prob-
lem in a liquid carrier or storage tanks have mostly been per-
formed with waves of small steepness assuming low sloshing so
that the nonlinear boundary conditions can be neglected.

The most commonly applied classic idealization for estimating
liquid response in excited rigid tanks is Housner’s [5]. The hydro-

dynamic pressures are divided into two components: the impul-
sive pressure caused by the portion of liquid accelerating with the
tank, and the convective pressure caused by the portion of liquid
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simulation of sloshing in tanker trucks during turning with a sta-
bilized finite element formulation which is implemented in paral-
lel using the message-passing interface libraries. The level set
method, the well-known marker-and-cell (MAC) method, and im-
mersed boundary methods are schemes of this type (e.g., see Perot
and Nallapati [10]). They can handle large displacements without
loss of accuracy. However, it is rather difficult to impose the free
boundary conditions, due to a lack of a sharp definition, see Nick-
ell et al. [11], Silliman and Scriven [12], Ruschak [13], and Kawa-
hara and Miwa [14]. In Lagrangian-like (surface-tracking) ap-
proaches, the mesh is configured to conform to the shape of the
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Fig. 1 A flow domain with a free surface discretized by
domain-like schemes: Eulerian-type (left) and Lagrangian-type
(right) methods

free surface, i.e., it continually adapts to it. The free surface is a
discontinuity whose evolution is explicitly tracked as an (n—1)
dimensional entity in an n-dimensional space. No modeling is
necessary to define the free surface or its effects on the flow field
because the grid points move with the local fluid particles. How-
ever, mesh movement or remeshing is usually necessary for large
deformations, see Bach and Hassager [15] and Ramaswamy and
Kawahara [16]. In mixed Eulerian Lagrangian-like approaches, or
arbitrary Lagrangian-Eulerian (ALE) formulations, the advantages
of both methods are taken into account, see Hughes et al. [17], or
more recently Sung et al. [18]. Other mixed approaches are also
proposed. For example, the “emplicit” method uses an explicit-
implicit time integration oriented to seakeeping ship motions, see
Huang and Sclavounos [19], while the “material point” method,
see York et al. [20], uses unconnected Lagrangian points and a
background Eulerian mesh for solving fluid-membrane interac-
tion.

While kinematic and dynamic laws govern the displacement of
the computational flow domain at the moving boundaries, in
Lagrangian-like (surface-tracking) approaches the motion of the
internal nodes is largely arbitrary. A primary criterion is to achieve
absorption of expected boundary displacements while keeping or
controlling the distortion of the mesh elements, which are as-
sumed to be well shaped at the start of the simulation. A number
of possibilities have been proposed; they can be roughly classified
in three main strategies (e.g., see Tezduyar et al. [21]):

1. algebraic mesh update: it applies an explicit algebraic
expression for the displacement of each interior node as a
function of the displacement of one or more boundary
nodes;

2. pseudo-elastic mesh update [22,23]: it embeds the mesh
in an elastic pseudo-solid governed by a fictitious consti-
tutive relation and solves a boundary value problem with
imposed boundary displacements. The mesh updates
based on using different ratios of the Lamé constants
were introduced by Johnson and Tezduyar [23], and re-
sults were reported as a function of that ratio;

3. mesh update through regeneration: it performs an en-
tirely new mesh based on the updated boundary locations
and projects the solution from the old mesh to the new
one.

In a previous study [24], a Lagrangian-type panel method in the
time domain was proposed for inviscid potential flows with a
moving free surface where the instantaneous velocity-potential
and normal displacement on the moving free surface were ob-
tained by means of a time-marching scheme after a spatial semi-

1018 / Vol. 73, NOVEMBER 2006

discretization with a low-order scheme. Later [25], a surface real-
location strategy for the instantaneous wet hull surface caused by
changes in the position of the intersection curve between the free
surface and hull surface was shown.

In this work, a mesh-movement technique for transient flow
domains with a free surface of a viscous and incompressible fluid
is addressed in the context of a finite element approach and solved
by parallel computation.

2 Governing Equations

The flow of an incompressible and viscous fluid of the New-
tonian type is considered. The governing flow equations are the
Navier-Stokes (NS) ones

p(dv+v-Vo-f)-V-0=0

(1)
V-v=0

on the flow domain Q,=0/(¢) at time ¢, for all 7 € [0, T], where v is
the fluid velocity, f is the body force, p is the fluid density, and T
is a final time. The fluid stress tensor o is decomposed into its
isotropic —plI and deviatoric T parts

o=-pl+T (2)

where p is the pressure and [ is the identity tensor. As only New-
tonian fluids with constant physical properties are considered, its
deviatoric part T is related linearly to the strain rate tensor with

T=2ue;, €= %[Vv +(Vo)T] (3)

where u and v=pu/p are the dynamic and kinematic viscosity of
the fluid and (...)” denotes the transpose. The boundary conditions
are

v=0 atl

pP= Patm at FFS (4)

7-n=0 at'g

where I, is the boundary on the solid walls while I'gg is the free
surface. Note that as no restriction is imposed on velocity at the
free surface, then the normal velocity there can be non-null. This
normal velocity is responsible of the free surface movement. The
boundary conditions at the free surface are similar to those nor-
mally imposed at an outlet boundary. ALE terms [17] are included
in order to take into account the advection of momentum caused
by the relocation of the nodes.

The discretization of this system of partial differential equations
is carried out by a finite element method based on the streamline
upwind/Petrov-Galerkin (SUPG) [1,2] and pressure-stabilizing/
Petrov-Galerkin (PSPG) [3,4] formulations. This leads to a set of
ordinary differential equations (ODE) in time, which is discretized
by a finite difference method. A trapezoidal integration rule is
employed for solving this ODE, which has been verified to be
second order for @=0.5 in the numerical examples (it is often used
a=0.6).

At each time step, a non-linear system of equations of the form

vn+1 —"
F<T,P"+l) =0 (5)

is obtained so that having setting the state of the fluid at time ¢"
and a mesh for the domain ("), the velocity and pressure un-
knowns at time #"*! can be solved. As the velocity may be non-
null at the free surface in a Lagrangian approach, the nodes there
should move with velocity
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Fig. 2 Notation for the spines-like employed in the mesh
movement
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However, displacements of the nodes tangential to the free surface
are considered irrelevant so that it is necessary to verify only the
normal component of this equation

x)7+l _xr;
A g

In addition, the movement of the free surface nodes are con-
strained along a fixed direction § i then

v

x(t) =x;+ 1,(1)$; (8)
where 7; is a scalar coordinate along some “spine” whose direc-
tion 19 §; and star.ting point X, see Fi.g. 2. Then Eq. (5) gives an
equation for the increment in % coordinate

U"Hl . ﬁ”

At =t = Am ©)
Note that the spines (x;,§;) do not change with time. The only
requirement is that the spine direction and the normal be nonor-
thogonal at each node at each time step, which means that the
fixed direction can be defined almost arbitrary. However, it is
convenient to choose them as parallel as possible to the expected
surface normal. For example, the spines for a spillway are usually
drawn perpendicular to the main profile of the structure. These
spines are only used for the movement of the free surface nodes,
that is, the interior ones are relocated by solving the pseudo elastic
problem regardless of spines directions. On the other hand, the
normal to the free surface at node x; is computed at each time step
using

o f Nj(x)ﬁ(x)dZFs
FS

(10)
i fl=1

where N,(x) is the finite element interpolation for the j node and
7i(x) is the normal to the free surface at point x. The integration is
carried out over the whole free surface, but, due to the local sup-
port of the finite element interpolation function, it involves only
those elements that are connected to the j-node. For linear tetra-
hedral elements in the fluid, this amounts to the weighted average
of the normals of the triangular panels around the j-node.

Other limitations of the method of spines are inclined walls or
high velocity normal to the spines, all situations that could also
appear simultaneously. Considering that displacements are pro-
jected onto the direction of the spines, all these cases produce loss
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Fig. 3 Boundary conditions for the pseudo elastic problem for
a mesh movement: nodes can move freely at the solid walls
ABCD, GH and IE (slip boundary condition) and non-slip one in

portion HFI to prevent large distortions of elements near the tip
F of the separator

of information or instabilities over the free surface. An alternative
to reduce negative aspects of spines direction is proposed by Behr
and Abraham [26], who treated in the referenced paper an appli-
cation for inclined walls problems. It must be emphasized that,
unlike this method, which uses the projection over fixed spines
only for the free surface, other proposals project the displacements
of all the nodes over fixed directions. As a consequence of this,
the mesh updated by the elastic solver is less distorted than in
other proposals.

3 Moving Mesh Strategy

Once the displacements of the free surface nodes at time step
n+1 are known, the positions of the internal nodes can be moved
so as to reduce the distortion of the mesh elements. Here, an
implementation of the pseudo-elastic mesh update strategy is em-
ployed. It is based on solving an artificial elastic problem with
imposed displacements at the free surface, and slip or non-slip
conditions at solid walls and other boundaries, see Tezduyar et al.
[22] or Johnson [23]. Consider, for instance, a typical case of a
truck container as in Fig. 10 with a separating wall. Under longi-
tudinal accelerations of the truck, the fluid tends to go from one
half to the other causing large displacements of the fluid surface
with extreme positions as shown in Fig. 3. Under these circum-
stances, the best boundary conditions for the pseudo elastic prob-
lem may be to let the nodes move freely at the solid walls ABCD,
GH and IE (slip boundary condition). However, these can cause
large distortions of the elements near the tip F of the separator, so
a non-slip one is imposed in a small region around the tip, such as
the portion HFI.

The pseudo elastic problem may be posed as

0;,;=0
0= 2fi€;+ N5 € (11)
1
€= E(“i,j +u;;)
where u is the mesh node displacements
u(,«:x}'” —x? (12)

where @ and X\ are the Lamé elastic constants for the fictitious
elastic material and §;; is the Kronecker tensor. Of course, the
pseudo elastic problem is invariant under a multiplicative constant
in the elastic coefficients since only Dirichlet conditions are used.
The only relevant parameter is the ratio between them, or its

equivalent, the Poisson ratio ¥. The Lamé constants & and \ can

be expressed in terms of more familiar modulus of elasticity E
with
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20149 (13)
It is not clear which values are more appropriate for v but for v
— 1/2 the material is nearly incompressible and the pseudo elastic
problem will become ill conditioned. The increment of the Pois-
son ratio towards the incompressible limit (7=0.5) tends to in-
crease the ability to admit larger displacements of the free surface
without collapse but for small deformations of the free surface,
lower values of ¥ can be used. In Ref. [23], this moving mesh
method was reported, including several examples and the study of
the influence of the Lamé constants was considered. The interest
in using lower values of ¥ is achieving a better conditioning of the
pseudo-elastic problem, and then a lower computational cost. In
the numerical examples, 7=0.3 was used for moderate free sur-
face deformations and 7=0.45 for larger ones.
The boundary conditions are

u=Ax""" at free surface AG + ED (14)

u=0 at non-slip boundary HFI (15)

u-i=0 atslip boundary ABCD + GH + IE (16)

where Ax™!'=x"*!—-x% The pseudo elastic problem is solved in

the reference mesh (), where the choice between slip and non-
slip boundary condition at solid walls is problem dependent and is
specified by the user. Once this problem is solved, the updated
position of the internal nodes x"*! is obtained with Eq. (12).

Several alternatives for the mesh relocation problem could be
devised. Non-linear elastic material behavior could be used in
order to reduce distortion but in the linear version shown here the
computing time per time step and memory requirements are lower
than the ones needed for the fluid, and it was able to solve prob-
lems with relatively large distortions, as shown in the examples
below.

4 Free Surface Elevation Smoothing

The whole algorithm as described so far is unstable for gravity
waves of high frequency and must be stabilized, mainly due to the
fully explicit character of the free surface update given by Eq. (9).
This has been also reported by other authors [27]. In this study, a
smoothing operator is applied to the free surface elevation so that
Eq. (9) is replaced by

(17)

A 7];:+l — S(A ﬁ;ﬁl
where S is a smoothing operator based on solving the heat equa-
tion with a diffusivity « adjusted so as to have a characteristic

spreading length yh, where £ is a characteristic global mesh size,
and vy is a user chosen parameter; usually, y=2 is employed.

5 Moving Contact Line

As described so far, the nodes at the contact line (i.e., the in-
tersection of the free surface with a wall boundary, also called
waterline) have null velocity due to how boundary conditions are
imposed, leading to large elevation gradients near the wall. The
non-slip condition may be relaxed at the contact line and replaced
by the Navier slip condition

=) (- ) == (=) =v) (19
where v is the fluid velocity at the contact line, vy, is the wall
velocity, I-nn is the projector onto the tangent plane and S is an
empirical slip coefficient. For =0 the non-slip condition is con-
sidered, whereas for 8— o the perfect slip condition is recovered.
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Fig. 4 Dimensions in m and initial free surface position for the
sloshing problem with known solution

In the cases evaluated up to now, the contact line movement is
implemented over a thin strip of nodes near the free surface or
only those nodes which define the contact line, over the walls,
whose nodal displacements are controlled by this condition.

6 Numerical Results

6.1 Some Comments on the Viscous Incompressible
Navier-Stokes Solver. This section depicts the ability of the in-
compressible Navier-Stokes module implemented in the PETSc-
FEM library [3] to capture the physics involved in the flow of a
viscous incompressible fluid, i.e., vorticity, transport, and dissipa-
tion. Both the Navier-Stokes solver and the linear system solver,
based on domain decomposition techniques, were applied to dif-
ferent benchmarks in order to prove its validity, accuracy, and
efficiency [28-30].

In particular, the laminar flow past a circular cylinder at mod-
erated Reynolds numbers is proposed. Much research work fo-
cused on the description of this problem, from the experimental
and numerical point of view, covering a wide range of Reynolds
numbers, see Refs. [31-39]. This fact had pushed the computa-
tional fluid dynamics (CFD) community to use this test as a
benchmark to validate CFD code development. Results obtained
from PETSc-FEM show good agreement with those published in
the references above. A maximum error of 0.5% in the prediction
of the Strouhal number is verified, while a maximum error of
2.5% in the predicted lift and drag forces is encountered.

6.2 Analytic Validation: 2D Viscous Sloshing. For validat-
ing the proposed method, a two-dimensional (2D) sloshing test
with analytical solution is performed, following Rabier and
Medale [40]. This test mainly shows how a numerical scheme
predicts, besides the frequency, the damping rate governed by the
fluid viscosity. It consists in solving the initial-value problem of
the small-amplitude motion of the free surface of a viscous fluid
in a rectangular tank (see Fig. 4), whose free surface is in an
initial position given by

h(x) =15+ aysin[7(1/2 - x)] (19)

where a is the amplitude of the initial sinusoidal perturbation of
the movement. The fluid is submitted to gravity acceleration, and
viscous forces are responsible for the damping of movement. The
boundary conditions chosen are perfect slip on solid boundaries,
as mentioned in Sec. 5, i.e., null normal velocity and tangential
stresses, and over the free surface, p="P,, and 7-n=0. The ana-
lytical solution of the linearized case is given by Prosperetti [41]
as

47 ! Z; a)éao
a(t)= X erfe(vk*t)? + E —
w,

812k + wp Z\z} - vk®

i=1
Xexp[(z? — vk?)tlerfc(z;t'"?) (20)

where v is the kinematic viscosity of the fluid, £ is the wave
number, wé: gk is the inviscid natural frequency, each z; is the
root of the following algebraic equation
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Fig. 5 Analytic solution curve and numerical results (dots)
calculated for the sloshing problem

2+ v+ 4K+ Pk + a)é:O (21)
where Z,=(z,—2z1)(z3—21)(z4—2;) with Z,, Z3, Z, obtained by cir-
cular permutation of the indices and erfc(...) is the error function
for complex variable. This expression is valid for small-amplitude
flat waves in an infinite depth domain.

The example was solved for the chosen geometry, with initial
maximum perturbation a@(=0.01 m, kinematic viscosity v
=0.01 m?/s, unit gravity acceleration g=1.0 m/s?, and a mesh of
40X 60 quadrangular elements for the container of h=1.5 m
height and d=1.0 m wide, with a time-step Ar=2.12 1072 s.

In Fig. 5, the vertical position of the upper left node versus time
is plotted over the curve calculated analytically.

The results obtained allow validation of the method, consider-
ing the capture of the frequency and the rate of viscous damping
in the experiment.

6.3 Analytic Validation: 3D Quasi-Inviscid Sloshing. The
proposed case corresponds to a right cylinder of annular base, as
shown in Fig. 6. The nature of this problem is clearly three di-
mensional (3D) because of the initial condition imposed, which
produces fluid circulation from one side to the other of the tank.
This test mainly shows how the numerical scheme simulates the
eigenvalues and eigenmodes of the free surface, e.g., see Papaspy-
rou et al. [42].

The internal radius of the cylinder is R;=1.0 m, and the external
one R,=2.0 m. The initial condition proposed, represented also in
Fig. 6, is the free surface perturbed by displacements given by the
natural frequency n=1, with maximum amplitude a,=0.05 m
over fluid height, #=1.0 m. In this way, the movement is not
influenced by natural modes other than the one used as initial

VERTICAL SECTION HORIZONTAL SECTION
Initial
| condition
Ri=1:
| b a-00s
—— i g
h =1 2
X
s
Re=2 :

Fig. 6 Vertical and horizontal sections of a right vertical cylin-
der with annular base for a three-dimensional quasi-inviscid
sloshing test. Initial free surface and reference axis. Dimen-
sions in m.

Journal of Applied Mechanics

condition.

As in the precedent case, boundary conditions are imposed as
follows: p=P,, and 7-n=0 over the free surface, and perfect slip
on solid walls.

The results obtained are contrasted with equations developed by
Moiseev and Petrov [43], which calculate natural frequencies of
sloshing for inviscid liquids in this kind of domain. As this ana-
Iytical value is computed under the inviscid hypothesis, it is not
expected that the numerical viscous values converge to it, even
when v—0 and the mesh is refined. However, it is expected to
give a good approximation with a small percentage of relative
erTor.

For the natural frequency w, the wave number k and the dimen-
sionless coefficient c=R,/R;>1, the equations considered are

G (22)
8
K = k"tanh[ "] (23)
where K}(;;) is the mth root of the equation
J(k) - N, (ck) =N (k) - J,(ck) =0 (24)

in which J,(...) and N,(...) are Bessel functions of first and sec-
ond kind, respectively. Besides, n=1 was adopted corresponding
to the lowest frequency mode. The higher periods calculated by
applying this method are 77=9.94 s, 7,=3.47 s, T5=2.49 s, and
T,=2.04 s, considering that T=27/w. As the first is the leading
one, 7,=9.94 s is used as an analytical period for comparing to
numerical results.

The finite element problem for this case was solved with a
mesh of 32,000 hexahedral eight-node elements and 35,721
nodes, with gravity g=1.0 m/s?, kinematic viscosity v
=103 m?/s, and Ar=0.1 s.

Numerical results are plotted in Fig. 7, where vertical displace-
ments of four representative nodes are plotted making it possible
to distinguish the period 7" of the movement. A global way to
show the sloshing is proposed, in this case the free surface nodal
displacements weighted with a “first moment function” (see Fig.
8). This function calculates the sum of nodal vertical displace-
ments multiplied by its distance to the axis of the cylinder, allow-
ing the estimation of the experimental period for the whole tank,
as the average of time differences between the zeros of the func-
tion. The period of movement calculated in this way is 7,
=10.33 s. The relative error between the numerical viscous solu-
tion and the inviscid one is under 4%.

Several analyses were made for studying convergence of the
method, taking the period of the movement as the main parameter.
The variables considered were the mesh mean step 4 and the time
step, keeping the quotient between them constant. Considering
that the finite element approximation applied is O(h?), the results
were used to make a Richardson’s extrapolation which gave an
asymptotic 7,=10.315 s for h— 0. In Fig. 9, the calculated points
are plotted, as well as Tj,.

6.4 Example: Tank With Internal Buffer. A truck-like con-
tainer tank with an internal buffer subject to an impulsive decel-
eration is considered (see Fig. 10). The container is moving right
at velocity 0.5 m/s and suddenly stops at t=0 s. The tank length
and width are L=1.20 m and L,=L/2 m, respectively, and the
curvature radius of tank corners is R-=0.15 m. The length of wall
edge separation is W=0.15 m. The starting height of fluid in the
tank is H;=0.36 m. In this example, the perfect slip condition (see
Sec. 5) is used on the contact line and the nodes on a thin strip
near the contact line, whose width is H;=0.2 X H;=0.072 m. The
number of elements in fluid movement direction is 80, the same as
in the wall-to-wall directions and in the crossing one (see Fig. 11).
The time step is Ar=0.02's, the gravity acceleration g
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Fig. 7 Displacements time evolution for some representative
mesh nodes in the tank of annular base

=9.81 m/s?, and the kinematic viscosity is ¥=3 X 107> m?/s.
The internal buffer is a wall edge separation that is placed to
break the fundamental longitudinal sloshing mode. Nevertheless,
with this geometrical container configuration and under longitudi-
nal accelerations or decelerations, there is a transient back-and-
forth splashing of the liquid, as a hydraulic pendulum. The ob-
served period of the main mode is 7;,~ 1.7 s. As the fluid passes
from the right half to the left one there is a strong viscous friction
near the tip of the separator. This causes emission of vortices,
which are the main energy dissipation mechanism. Figures 12 and
13 correspond to time instants near the point of maximum height

5Pseudo-amplitude [m]

4

3

2

Gl SEEEEE TS

-4

Fig. 8 Filtered nodes movement on the free surface for the 3D
cylindrical tank
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Fig. 9 Period of movement T versus mesh mean step h for the
sloshing 3D test

in the left half. A forming vortex is clearly seen in Fig. 12 on the
left wall of the separator near the tip. In Fig. 13 it has already been
separated from the wall. Once the vortices are shed, they are
transported by the fluid and in Figs. 14 and 15 the vortex is pass-
ing to the right half and a new vortex is forming on the right half.
The Reynolds number (Re) observed in the region where the
vortices are shed is low enough (Re ~100) to make a turbulence
model unnecessary, so the vorticity is a result of the averaged
Navier-Stokes equations, which are accurately solved by the cor-
responding PETSc-FEM module, as mentioned in Sec. 6.1.

7 Conclusions

In this study a moving mesh technique for transient free surface
flows of an incompressible and viscous fluid of Newtonian type,
in the context of SUPG and PSPG formulations for finite elements
is shown.

The combined fluid and moving mesh problem was formulated
within the picture of the multi-physics programming paradigm,
and was implemented reusing pre-existent fluid and elastic mod-
ules which are not specifically oriented to the free surface case.

Numerical tests show that the frequency and damping of slosh-
ing modes are accurately predicted. Even if the surface elevation
is updated with an explicit strategy, time steps as large as one
twentieth of the main sloshing mode period can be used. The
simple moving mesh strategy based on a linear pseudo-elastic
operator proved to be robust enough, allowing large surface eleva-
tion amplitudes.

e
L H
Rc Rw )
J h 4
L

Fig. 10 Main geometrical dimensions of a truck-like container
with a separating wall
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The right cylinder of annular base example shows that the
method can be applied in 3D and more complex geometries with
structured or unstructured meshes composed of any combination
of tetrahedral, hexahedral, and wedge elements.

The advantages of this technique over those with remeshing are
related to the computational cost of the pseudo elastic problem,
which is smaller than a whole remeshing, and the possibility of
parallelizing the pseudo-elastic problem.

Future work will involve the inclusion of more complex mov-
ing mesh strategies involving non-linear pseudo-elastic models. In
sloshing applications, modeling will be focused on how to couple
the dynamics of the fluid with the container dynamics, for in-
stance, the simulation of sloshing in containers on tanker trucks
with accelerations during turning.

Fig. 12 Vorticity and streamlines at time step n;=209. A form-
ing vortex is clearly formed on the left wall of the separator
near the tip.

Fig. 13 Vorticity and streamlines at time step n;=217. The pre-
viously formed vortex has been separated from the wall.

Fig. 14 Vorticity and streamlines at time step n;=224. Once the
vortices are shed they are transported by the fluid.

Journal of Applied Mechanics

Fig. 15 Vorticity and streamlines at time step n;=230. A new
vortex forming on the right half.

PETSc-FEM
Navier Stokes solver

ALE hook

PETSc-FEM
elastic solver

Fig. 16 PETSc-FEM hooks that exchange information and data
for the synchronization of the global execution of the fluid and
pseudo elastic solvers
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Appendix: Parallel and Multi-Physics Implementation
Details

Besides being relevant from the physical and engineering point
of view, this problem is interesting as a paradigm of multi-physics
programming. Even if it is perfectly possible to implement it as a
module, it is interesting to see how it is implemented reusing
preexistent fluid and elastic modules which are not specifically
oriented to the free surface case. The proposed algorithm is imple-
mented in the PETSc-FEM [28,44] code, which is a parallel multi-
physics finite element program based on the Message Passing In-
terface (MPI) [45] and the Portable Extensible Toolkit for
Scientific Computations (PETSc) [46]. Among CFD applications,
this flow solver includes, for instance, hydrology [29] and free
surface flows [24,47].

The pseudo-elastic and fluid problems are run in independent
PETSc-FEM instances, both in parallel. In general, there is a
PETSc-FEM process for the flow problem and another for the
pseudo-elastic one at each computing node. The key point in the
implementation is the data exchange and synchronization between
both parallel processes. This could be done by modifying the
PETSc-FEM sources or by writing a small script or C++ external
code that communicates with both PETSc-FEM processes. Instead

‘ NS solver p0|

ALE hook P - s 4
elastic solver p ‘NS solver pt[ ‘NB solver p2 [NS sofvsrp.‘?'
ALE hook elastic solver p1 ‘ elastic solver p2 lslastlc solva31
7 A s =
e 5 '.‘ o — = v /
= =\ = = [\
@ ® 0] [0}
10.0.0.1 10.0.02| 10.0.0.5) 10.0.0.4|

Fig. 17 The master processes of both PETSc-FEM (fluid and
mesh-movement) are executed at the same computing node
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Fig. 18 The PETSc-FEM parallel runs (fluid and mesh move-
ment) are running in different node sets but their master pro-
cesses (MPI rank 0) must be the same

of these alternatives, PETSc-FEM has a feature called ‘“‘hooks”
that are C++ modules, or eventually shell scripts (bash, Perl, Py-
thon or other), that are run at certain specific points in the pro-
gram. This concept was borrowed from the GNU Emacs editor
and also from the Linux [48] kernel. The C++ hooks are compiled
and dynamically loaded at runtime, so that it is not necessary to
link them against PETSc-FEM or modify the sources. Currently,
the Navier-Stokes PETSc-FEM module launches hooks at four
points in the execution thread: before the beginning of the time
step loop, at the beginning and end of each time step, and after the
time step loop.

For the problem at hand two PETSc-FEM C++ hooks were
written, one that is executed from the NS process and the other
from the pseudo-elastic mesh-relocation process. Both hooks ex-
change information and data for the synchronization of the global
execution through a first in first out (FIFO), also called a “named
pipe,” with an ad hoc protocol, see Fig. 16. This is an efficient and
portable way of communication between processes and is part of
the standard C library (“libc”). There is a restriction related to this
implementation: inter-process communication via FIFO can only
be done between processes in the same host, constraining the
master processes of both PETSc-FEM modules to be executed at
the same computing node. That is, the parallel runs (fluid and
mesh movement) can be executed on the same set of nodes (see
Fig. 17), or in different ones. However, their master processes
(MPI rank 0) must be the same (see Fig. 18). This restriction
could be removed by replacing the FIFO by a socket.

The sequence of the process is the following. First, the Navier-
Stokes solver calculates the state in the fluid. Then, the velocities
on the surface nodes are sent to the pseudo-elastic solver which
computes the new free surface node positions and solves the
pseudo-elastic problem. The new fluid nodes coordinates are sent
back to the fluid solver, which computes the fluid node mesh
velocities, needed for computing the ALE terms. Then the fluid
solver computes the fluid state and the whole process is restarted.
In summary, the communication between the modules at each
time step amounts only to sending the free surface velocities to
the pseudo-elastic solver, and the fluid nodes positions back. Note
that, as the mesh partitioning for both modules is the same, much
of this traffic is inside each processor, so that no communication
overhead is caused.

Further developments and examples of free surface flows with
mesh movement solved by parallel computation were published
by Tezduyar et al. [21] and Johnson and Tezduyar [23].
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Analysis in Gradient-Dependent
J, Plasticity

In this work the geometrical method for the assessment of discontinuous bifurcation
conditions is extended to encompass gradient-dependent plasticity. To this end, the
gradient-dependent localization condition is cast in the form of an elliptical envelope
condition in the coordinates of Mohr. The results in this work demonstrate the capability
of thermodynamically consistent gradient-dependent elastoplastic model formulations to
suppress the localized failure modes of the classical plasticity that take place when the

hardening/softening modulus H equals the critical value for localization H,, provided the
characteristic length | remains positive. [DOI: 10.1115/1.2202348]

1 Introduction

Finite element solutions of boundary value problems involving
strain-softening materials are strongly affected by mesh-
dependency when the governing equations turn ill-posed. This is
related to the formation of spatial discontinuities of kinematic
fields and consequently, to a discontinuous bifurcation condition,
see among others, Nadai [1], Thomas [2], Hill [3], and Rudnicki
and Rice [4]. To reduce the loss of objectivity of the related com-
putational results, two strategies are at hand: to improve the finite
element technology or to regularize the description of the material
behavior at the constitutive level.

To solve the mesh sensitivity of the computational predictions
of strain softening material models, two possible strategies are at
hand. On one hand, to improve the finite element technology by
developing both standard finite element formulations, which are
able to follow the post-bifurcation localization using realignment
methods, and enhanced finite elements with discontinuous inter-
polation capabilities. On the other hand, to regularize the descrip-
tion of the material behavior at the constitutive level. However, a
combination of both approaches seems to be the most effective
one.

The regularization strategy leads to enriched material formula-
tions that are mostly based on nonlocal approaches. Thereby, the
gradients of the displacement function are evaluated in the vicin-
ity of the material point, thus a spatial average is taken into ac-
count to evaluate the point value. This is accomplished by defin-
ing suitable weighted averages (nonlocal formulations) or
gradients (gradient formulations) of a selection of thermodynamic
variables.

In the literature, gradient-dependent material theories have been
advocated within two different conceptual settings. On the one
hand, within the classical hypoelastic framework which does not
have a thermodynamic law, e.g., Zbib and Aifantis [5], Fleck and
Hutchinson [6], Zbib [7]. Related to this type of material formu-
lation Sluys et al. [8], de Borst et al. [9,10], and Pamin [11] have
proposed numerical algorithms for the stress integrations at the
local and finite element level.

On the other hand, gradient-dependent material formulations
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were analyzed and advocated within a thermodynamic framework,
e.g., Valanis [12], Dillon and Kratochvil [13], and more recently
Valanis [14] and Svedberg and Runesson [15]. In this last case the
nonlocal character of the constitutive equations is restricted to the
internal variables, leading to an additive expression of the free
energy density.

A detailed discussion regarding the different gradient models of
plasticity is given in Fleck and Hutchinson [16,17] and where the
subtle differences in regularizing softening and in introducing size
effects is highlighted.

In this work, the localization properties of the thermodynami-
cally consistent gradient-dependent J, plasticity model with iso-
tropic hardening/softening law are analyzed by means of the geo-
metrical method.

To this end, the gradient-dependent elastoplastic localization
properties are cast in the form of an elliptical envelope condition
in the oy— 7y coordinates of Mohr, see Pijaudier-Cabot and Be-
nallal [18], Liebe and Willam [19]. Therefore, the tangency con-
dition between the localization ellipse and the major principal
circle defines the existence of localized failure mode and the cor-
responding critical directions. In the present analysis, the geo-
metrical localization condition is defined in terms of the degree of
nonlocality of the constitutive model that in case of gradient plas-
ticity is represented by the characteristic length.

2 Gradient-Dependent Elastoplasticity

We follow the thermodynamically consistent gradient-
dependent material theory by Svedberg and Runesson [15]. After
reviewing the relevant thermodynamic and constitutive equations,
the J, gradient elastoplastic model is presented, in which the non-
local character is restricted to the internal plastic variables.

2.1 Thermodynamic Consistency. Under consideration of
small strain kinematics, the free energy density of a strain gradient
elastoplastic continuum can be expressed in an additive form as

pW (&4, k,VK) = pWe(£°) + pWP(k) + p¥P$(V k) (1)

where p is the material density. The elastic free energy density is
defined as pW¢(e%)=(1/2)&°:E°: &%, €° and E° being the elastic
strain tensor and the fourth-order elastic operator, respectively.

The local and gradient free energy density contributions due to
inelastic strains W1 and WP¢ are expressed in terms of the
scalar hardening/softening variable k. We observe in Eq. (1) that
the gradient effects are only restricted to hardening/softening be-
havior via the inclusion of V.

From the Coleman’s relations follow the constitutive equations
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av
o=p— o=E"¢° (2)
de
whereby o is the stress tensor and € the strain tensor. The dissi-
pative stress within the continuum is defined as
K=K" +K® (3)
being

p.loc

Kloc — _ Ké=V. < ki ) (4)
P P v

while on the boundary J(), the dissipative stress due to the gradi-
ent in the second equation in Eq. (4) turns

KeP = _m. p (5)

A(Vk)
with the (outward) normal m to J€).
2.2 Constitutive Equations

2.2.1 General Case. Considering a convex set B of plastically
admissible states defined as B={(o,K)|®(o,K)<0} with the
convex yield function ®=®(o,K), and a dissipative potential
®"=d"(0,K), which turns @ in case of associated plasticity.
Then, the rate equations for the inelastic strains &€’ and the scalar
hardening/softening variable «, take the forms

&=N— and k=N— (6)
Jdo K
where X is the rate of the plastic parameter.

From the Prandtl-Reuss additive decomposition of the total
strain rate tensor into the elastic and plastic components that char-
acterized the flow theory of plasticity and considering Egs. (2),
(4), and (6) follow the constitutive equations (in rate form)

s

Dy 9P L .
o=0°-\E° with ¢°=E%¢& (7)
Jo
K°=—\H (8)
K
and
e N N
Ké8=[1"V -H*- | VA +AVK— 9)
JK JK’
which on the boundary turns
. N PO
K(g*”)z—lzm-Hg-[VA—+)\VK 2} (10)
dK dK

In the above equations, two types of state parameters were con-
sidered. On the one hand, the /ocal hardening/softening modulus
H and, on the other hand, the second-order tensor of nonlocal
gradient state parameters H¢ defined as

1 Fwrs

W Eaw e ave "

with

det(H®) =0 (12)

As pointed out by Svedberg and Runesson [15], there are three
possible interpretations for the characteristic length / in Eq. (11):
as a convenient dimensional parameter which allows that both H
and H® get the same dimension, as a physical entity that defines
the characteristic measure of the microstructure, and as a param-
eter that brings numerical stabilization to the local constitutive

Journal of Applied Mechanics

theory.

The Kuhn-Tucker conditions complete the rate formulation of
the gradient-dependent plasticity in terms of hardening variables
which, similar to the local theory, are defined by

A=0 P(eK)<O0 NP(o,K)=0 (13)

2.2.2 J, Material Model. The expression of the von Mises

yield criterium, corresponding to J, materials, yields

3
®(0,K)=0,~0,~-K o0,= \/;|s|

with o, the yield stress, K the dissipative stress and s the devia-
toric stress tensor

(14)

. Tii .
s=o-1o, with 0'0=? and i=1,2,3 (15)
I being the second-order identity tensor.

The flow and hardening rules are of the associative type, there-

fore the rate equations for the internal variables in Eq. (6) are

'11_'£ RN
& —)\2 and k=-\
Ue

(16)

The explicit expression of the dissipative stress K in Eq. (14)
follows from Egs. (3) and (4), where the local and gradient free
energy densities take the forms

pwrioe = Lp (17)
1,
p‘P”’gzgl Vi -H! Vi (18)
Therefore, the components K'° and K2 of K result now
K" =—Hk (19)
K$=[1>V - (H®-Vk) (20)

3 Condition for Localized Failure

From the continuum mechanic’s viewpoint, localized failure
modes are related to discontinuous bifurcations of the equilibrium
path, and lead to the loss of ellipticity of the equations that govern
the static equilibrium problem.

The inhomogeneous or localized deformation field exhibits a
plane of discontinuity that can be identified by the singularity
condition of the acoustic or localization second-order tensor, see
Ottosen and Runesson [20] and Willam and Etse [21].

Local and gradient flow theories of plasticity both result in the
tangential equation that reads

o=E"¢ (21)
where E?” denotes the elastoplastic material operator that can be
expressed by means of the encompassing equation

1 ap" oD
E?=E°- E¢— ® —E° (22)
(h+hy)  do  Jo
with the local and nonlocal generalized plastic moduli
Ny O
h=—:E¢ +H (23)
Jo Jo

and
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0 for local plasticity

hé = = 2l 2 . ..
n; - Hé - n, ? for gradient-dependent plasticity

(24)

6 being the width of the localization zone, n; the normal direction
to the discontinuous surfaces, and

_ D 9b”
= H%% (25)
_ ID Jb”
H¢ = Hggg (26)

From Eq. (26) and for the particular case of gradient isotropy, we
obtain
HE = H¢1 (27)

with H$ a positive, nonzero scalar. As n; is a unit vector, results

n;- ﬁg = I?Ig (28)
and, from the second equation in Eq. (24)
_ (2ml)\?
h®=H® 5 (29)

In case of localized failure forms associated with discontinuous
bifurcation we resort to the gradient elastoplastic localization ten-
sor defined as

P8 = QF — a'®a 30
Q h+h® (30
with the elastic-localization tensor
Q°=n;-E° (31
and
* &CI)*
a’=—E°-n (32)
Jo
a=—:E° n; (33)
Jo

The localized failure condition in case of gradient-dependent elas-
toplasticity

det(Q%) =0 (34)

leads to the analysis of the spectral properties of Q. Its smallest
eigenvalue, with respect to the metric defined by Q¥¢, has the ex-
pression

B a(n) - [Q‘(n)]™" -a"(n) _

AV=1 0 35
h+h® (35)
In case of gradient isotropy, the explicit form of Eq. (35) is
b i «
H+—E:“——-a-[QT"'-a"=0 (36)
Jo Jo
with
_(2ml\* _
H:Hﬁ(%) + i, (37)

The localization condition in Eq. (36) serves as a basis for ana-
lytical and numerical evaluations of the localization directions n,;
and of the corresponding graphical maximum hardening/softening

parameters H,.(n))=max[H(n,)] in case of local plasticity, and

H%(n))=max[H%(n;)] in gradient-dependent plasticity.
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4 Geometrical Localization Analysis

In this section, the geometrical method for localization analysis
is derived for the thermodynamically consistent gradient-
dependent J, elastoplastic model formulation detailed in Sec.
2.2.2. The approach is based on the original proposal by Benallal
[22], which was further developed by Pijaudier-Cabot and Benal-
lal [18] and Liebe and Willam [19] for classical plasticity.

Equation (36) defines an ellipse in the oy—7y coordinates of
Mohr

Oy=M- 0N, s=N;-S-Ny (38)

(39)

The critical direction n;, normal to the plane where the Mohr
components are evaluated, and the maximum hardening/softening

=) (n-8) - (n;-s-m)’

parameters H, and f_lf for localization are obtained when the Mohr
circle of stresses

(oy=0) + 7 =R (40)
contacts the elliptical localization envelope
—a): P
lon=00” Ty _, (41)

A2 B
where the center and radius of the Mohr circle, Eq. (40), are
+
o= 215 42)
2
and
g,—-03
R=—" 43
: )

with o and o3, the major and minor principal stresses, respec-
tively, and the center o, and half axes A and B of the localization
ellipse are defined in the following.

5 Localization Properties of J, Gradient-Dependent
Elastoplasticity

Considering for the elastic tensor E¢ the expression
E‘=2GL,+AI®1 (44)

with the shear module G and the Lamé’s constant A, the traction
vectors in Egs. (32) and (33) can then be rewritten as

(45)

and from Eq. (31), the inverse of the localization tensor Q¢ shields

efl_l _;
[Q] —G|:I 2(1_V)nl®n,]

with the Poisson’s modulus v. Replacing Eq. (46) in Eq. (36), and
combining with Egs. (38) and (39), the center oy and the half axes
A and B of the localization ellipse, Eq. (41), results

a =a=2Gn;-s

(46)

(7'0:%[] (47)
) H
B*=1J, E+1 (48)
2 l-v
A?=2 B (49)
1-2v

In the particular case of classical elastoplasticity the inhomoge-
neous differential Eq. (36) turns

:E“: 50
Jo Jo (50)

therefore, the parameter B> representing the vertical axis of the
ellipse in Eq. (41) now takes now the form
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Fig. 1 Localization in local and gradient von Mises yield crite-

rion in the principal stress space

H,
BZ=J2<—C+1>
G

So, the thermodynamically consistent gradient-dependent plas-
ticity formulation allows a simple extension of the geometrical
localization method as demonstrated in this section. Thereby, the
nonlocal effects in terms of the characteristic length and of the
gradient hardening/softening modulus only affect the expression
of the localization ellipse half axes A and B.

(51)

5.1 Graphical Analysis. The localization properties of the
thermodynamically consistent gradient-dependent J, elastoplastic
model are analyzed for the plane strain condition when o,=1(0,

+0,) and H=H,, H being the particular hardening/softening

modulus of the gradient-dependent model and H,. the critical one
for localization of the local elastoplastic model. As follows from
Eqgs. (41), (48), and (37), the localization properties of the
gradient-dependent J, elastoplastic model depend on the ratio &/1.
As the purpose of this work is to evaluate the performance of the
condition for localized failure of the model by means of the geo-
metrical method and not the calibration of the model, the analysis
in this section will mainly focus on the sensitivity of the localized
failure indicator performance regarding the variation of the ratio
6/1 but not on the evaluation of the most appropriate value of this
ratio for different types of metals.

The results in terms of det(Q) are depicted in Fig. 1 in the

det(Qep)/det(Qe)
—— det(Qepg)/det(Qe)

~ =7 Mohr circle
Local Plasticity
— Gradient Plasticity

5 !
0 t } Iy
g \ 1 LgFELS,
» ’
~ |- =
3=0.5
-1
0
-1 0 1 0 45 90 135 180
(@ o/a, (b) o

Fig. 2 Geometric and localization analysis at peak of the
simple shear test. Local and gradient-dependent plasticity. J,
material model.
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- - Mohr circle
Local Plasticity
— Gradient Plasticity

det(Qep)/det(Qe)
— det(Qepg)/det(Qe)

-15 -1 0 0 45 90 135 180
(@) 0'/()'y (b) 0()

Fig. 3 Geometric localization analysis at peak of the uniaxial
compression test. Local and gradient-dependent plasticity. J,
material model.

principal stress space. The adopted internal material length equals
the width of the localization zone /= 6. As can be observed in Fig.
1, the gradient-regularized plasticity is able to suppress the fulfil-
ment of the localization condition, i.e., discontinuous bifurcation,
for the whole range of limit stress states of the von Mises mate-
rial, in the plane strain regime.

The geometrical localization analysis of the nonlocal gradient
J, material formulation is performed for the simple shear, uniaxial
compression, and uniaxial tensile tests and the results are shown
on the left side of Figs. 2—4, respectively. These results illustrate
the influence of the characteristic length / in the mode of failure.
When />0, no contact is observed between the localization el-
lipses of the gradient-dependent plasticity model and the Mohr
circle corresponding to the analyzed limit stress state. Thus, dif-
fuse failure mode takes place for all three limit stress states. How-
ever, as [/0—0 the gradient-based localization ellipses ap-
proaches that of the local model which contacts the Mohr circle,
indicating that the localization condition is fulfilled and therefore,
discontinuous bifurcation takes place.

To verify the previous geometrical results regarding the capac-
ity of the J, gradient-dependent model to suppress discontinuous
bifurcations of the related local model formulation, a numerical
localization study is performed at the constitutive level. The dia-
grams in the right side of Figs. 2—4 show the variation of the
normalized localization indicator det(Q%%)/det(Q¢) with the in-
plane failure angles at peak of the pure shear, uniaxial compres-
sion, and tensile test, respectively. Both the local and the no-local
gradient J, test are considered. These results demonstrate the ca-
pabilities of the J, gradient-dependent elastoplastic model formu-
lation to eliminate discontinuous bifurcation in the form of local-
ized failure.

- - Mohr circle det(Qep)/det(Qe)
Local Plasticity — det(Qepg)/det(Qe)
— Gradient Plasticity 1

-05 0 05 1 1.5 0 45 90 135 180
Failure Angle

Fig. 4 Geometric localization analysis at peak of the uniaxial
tensile test. Local and gradient-dependent plasticity. J, mate-
rial model.
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6 Conclusions

In this work the geometrical localization method was extended
for the analysis of the discontinuous bifurcation properties of the
J, gradient-dependent elastoplasticity. The localization condition
was expressed in terms of the coordinates of Mohr to obtain an
ellipse that represents the envelope of localization for each par-
ticular state of stress. Thereby, localized failure mode is geometri-
cally signalized by the tangency condition between the localiza-
tion ellipse and the major principle circle of Mohr, while the
critical localization direction is defined by the inclination of the
Mohr circle radius to the tangential point with the localization
ellipse.

The results of the geometrical localization analysis indicate that
the J, gradient-dependent elastoplastic formulation suppresses the
discontinuous bifurcations of the classical elastoplasticity when

the selected hardening/softening modulus H equals the critical one

for localization of the local material formulation H..

The regularization capability of the gradient formulation re-
duces as [/ d— 0. Therefore, the characteristic length / defines the
level of diffusion of the failure mode. When [ approaches zero, a
continuous transition from non-local gradient to local elastoplas-
ticity is obtained. In the extreme case, when /=0, see Egs. (37),
(48), and (51), the local formulation is fully recovered.
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Kinematic Laplacian Equation
Method: A Velocity-Vorticity
Formulation for the Navier-Stokes
Equations

In this work, a novel procedure to solve the Navier-Stokes equations in the vorticity-
velocity formulation is presented. The vorticity transport equation is solved as an ordi-
nary differential equation (ODE) problem on each node of the spatial discretization.

Fernando L. Ponta’
College of Engineering,
University of Buenos Aires,

Paseo Colon 850, Evaluation of the right-hand side of the ODE system is computed from the spatial solu-
Buenos Aires C1063ACY, tion for the velocity field provided by a new partial differential equation expression called
Argentina the kinematic Laplacian equation (KLE). This complete decoupling of the two variables

e-mail: fponta@fi.uba.ar in a vorticity-in-time/velocity-in-space split algorithm reduces the number of unknowns to
solve in the time-integration process and also favors the use of advanced ODE algo-
rithms, enhancing the efficiency and robustness of time integration. The issue of the
imposition of vorticity boundary conditions is addressed, and details of the implementa-
tion of the KLE by isoparametric finite element discretization are given. Validation results
of the KLE method applied to the study of the classical case of a circular cylinder in
impulsive-started pure-translational steady motion are presented. The problem is solved
at several Reynolds numbers in the range 5<Re <180 comparing numerical results with
experimental measurements and flow visualization plates. Finally, a recent result from a
study on periodic vortex-array structures produced in the wake of forced-oscillating

cylinders is included. [DOIL: 10.1115/1.2198245]

1 Introduction

During the last three decades several studies appeared concern-
ing the representation of the Navier-Stokes equations in terms of
non-primitive variables (namely the vorticity and the velocity po-
tentials) instead of the classical formulation in terms of the primi-
tive variables velocity and pressure. This family of approaches is
generally known as vorticity-stream function (w, ) methods.
More recently, together with those works on the vorticity-stream
function formulation and as a natural extension of them, a com-
paratively smaller number of studies were presented using a hy-
brid formulation in terms of the primitive and non-primitive vari-
ables velocity and vorticity. As several authors pointed out [1-3],
the vorticity-velocity (w,v) methods (as they are generally
known) present some advantages compared with the classical for-
mulation on primitive variables or with the vorticity-stream func-
tion methods, namely: (a) The pair of variables involved is par-
ticularly suited for a dynamic description of incompressible
viscous flows. The vorticity is governed by a well understood
dynamical equation while the velocity, which embodies the kine-
matical aspect of the problem, can be related to the vorticity by a
simple elliptic equation. In vortex-dominated flows the vorticity
advection is a fundamental process determining the dynamics of
the flow, hence the vorticity-velocity description is closer to
physical reality. (b) The variety of boundary conditions that can be
chosen for the velocity potentials due to the nonuniqueness of the
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velocity representation is avoided since the velocity is supple-
mented by unique boundary conditions. (c¢) In some specific situ-
ations like that of external flows, boundary conditions at infinity
are easier to implement for the vorticity than for the pressure. (d)
The noninertial effects only enter the solution procedure of the
(e,v) formulation via the proper implementation of the initial and
boundary conditions. Hence, the general applicability of an algo-
rithm based on the (w,v) formulation is enhanced because it is
independent of whether or not the frame of reference is inertial.

The first uses of the (w,v) formulation of the incompressible
Navier-Stokes equations were reported by Fasel [4] who analyzed
the stability of boundary layers in two dimensions and by Dennis,
Ingham, and Cook [5] who derived a numerical method for com-
puting steady-state three-dimensional flows. Both approaches
were based on finite difference techniques. Since then several in-
vestigations have been conducted on incompressible hybrid vari-
able models using variations of the finite difference approach
(e.g., see [6-8], among others). A vorticity-velocity finite element
solution of the three-dimensional compressible Navier-Stokes
equations have been presented by Guevremont et al. [9] who in-
vestigated the steady state flow in a cubic cavity for several Mach
numbers. More recently Clercx [2], then Davies and Carpenter
[10], introduced pseudospectral procedures for the (w,v) formu-
lation. Lo and Young [11] presented an arbitrary Lagrangian-
Eulerian (w,v) method for two-dimensional free surface flow,
using finite difference discretization for the free surface and finite
element discretization for the interior of the domain.

A disadvantage of the vorticity-velocity formulation, compared
with the formulation in primitive variables, is that in the most
general three-dimensional case the (w,v) formulation requires a
total of six equations to be solved instead of the usual four of the
primitive-variable approach [2]. The objective of the present study
is to introduce a new method based on the (w,v) formulation
which aims to tackle this six-unknown question and to improve
some other aspects of the numerical implementation of the (@,v)
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approach. This alternative method is characterized by a complete
decoupling of the two variables in a vorticity-in-time/velocity-in-
space split algorithm, thus reducing to three the number of un-
knowns to solve in the time integration process. As we shall see
later on, this time-space splitting also favors the use of adaptive
variable-step size/variable-order ordinary differential equation
(ODE) algorithms which enhances the efficiency and robustness
of the time integration process.

A comprehensive study of the theoretical basis of the vorticity-
velocity formulation in two and three dimensions can be found in
Chapter 4 of Quartapelle [1], including a series of theorems prov-
ing the equivalence between the (w,v) formulation of the incom-
pressible Navier-Stokes equations and their classical formulation
in primitive variables (velocity-pressure).

1.1 Vorticity Boundary Conditions. A common problem to
all the methods based on nonprimitive or hybrid variables is the
absence of boundary conditions for the vorticity in the presence of
no-slip boundary conditions for the velocity. In the case of the
(@, ) formulation it also implies that the Poisson problem for the
stream function with both Dirichlet and Neumann conditions is
overdetermined. There are several different ways of overcoming
this difficulty. Some earlier approaches like the boundary vorticity
formula or the vorticity creation methods use different techniques
to define the boundary values of vorticity in terms of the stream
function (or the velocity) by means of some approximate formula
applied locally at the no-slip boundary. They are roughly equiva-
lent, however their implementation may differ remarkably de-
pending on the type of discretization used (see [1,12-14]).

An alternative viewpoint has been introduced by Quartapelle
and Valz-Gris [15,16]. They showed that in order to satisfy the
no-slip boundary conditions for the velocity, the vorticity should
be subject to an integral constraint. This integral condition en-
forces the orthogonality of the abstract projection of the vorticity
field with respect to the linear space of the harmonic functions
defined on the domain. This condition is a direct consequence of
the boundary conditions on the velocity, and ensures satisfaction
of essential conservation laws for the vorticity. An important as-
pect of the integral vorticity conditions is their nonlocal character:
the vorticity distribution in the interior of the domain and on its
boundary is affected each time by the instantaneous values of the
tangential and normal components of the velocity along the entire
boundary. In other words, the distribution of the vorticity in the
whole domain is constrained by the velocity boundary values. A
detailed description of the mathematical basis and the different
numerical implementations of the orthogonal-projection operation
of the vorticity field for the (e, ¢) formulation can be found in
[1].

In our method, the issue of the vorticity boundary conditions on
the no-slip surface is dealt with by a sequence of two solutions of
the kinematic Laplacian equation (KLE) under a different set of
velocity boundary conditions. Thus, inside each time step, we per-
form two projectional operations of integral character applied on
the velocity field which ensures that the vorticity evolves in time
in a way compatible with the time-dependent velocity boundary
values.

2 Laplacian Approach as a Vorticity-Velocity Method:
KLE

Starting from the well-known vector identity
Vo=V-Vo=V(V-0)-V X (V Xv) (1)

We found that a variational form of this “Laplacian” expression
could be advantageously used as the spatial counterpart of the
vorticity transport equation in a new type of vorticity-velocity
method.

Let us consider the full three-dimensional incompressible
Navier-Stokes equation in vorticity form for a flow domain ()
with solid boundary J€) and external boundary of () in the far
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field, in a moving frame of reference fixed to the solid

Jw 5
E=—v-Vm+vV w+w-Vu 2)
If we have the velocity field v in () at a certain instant of time,
we can rewrite Eq. (2) as

Jw
—, =vV(Vxo)+ WAV X0)+(VX0):Vo  (3)
and solve for @ at each point of the discretization of () by inte-
gration of Eq. (3) using an ODE solver.
Now, let us revisit Eq. (1) but this time impose a given distri-
bution for the vorticity field and the rate of expansion

Vo=VD-VX 4)
V-v=D (5)
VXv=w (6)

Here o is the vorticity field in ) given by Eq. (3) and D is the
corresponding rate of expansion (i.e., the divergence field). The
KLE is essentially defined as a solution of Eq. (4) in its weak form
under the simultaneous constraints (5) and (6).

The imposition of the corresponding distributions for both the
rate of expansion and the vorticity is needed in order to obtain a
unique solution for the complete velocity field from Eq. (4). The
first constraint defines the irrotational-not-solenoidal component
of the velocity field, and the latter the solenoidal-not-irrotational
component. If those two components are given, the remaining
component (which is both solenoidal and irrotational) is uniquely
determined for prescribed boundary conditions. A comprehensive
treatment of this subject may be found in [17] Secs. 2.4-2.7.
Usually, in other vorticity-velocity approaches the Poisson Eq. (4)
is solved simultaneously with the vorticity transport equation to-
gether with an imposition of the incompressibility condition (i.e.,
a constant zero rate of expansion). With the KLE, instead, the
objective is to uncouple the velocity and vorticity solutions.
Hence, the imposition of the vorticity distribution is needed as a
second constraint in order to obtain an independent solution of the
velocity field. To clarify this point, let us consider the orthogonal
decomposition of the velocity field in its irrotational not-
solenoidal component vp, its solenoidal not-irrotational compo-
nent v, and its irrotational and solenoidal (i.e., harmonic) compo-
nent v,. Under prescribed boundary conditions for the normal
component of the velocity and given distributions for the vorticity
o and the rate of expansion D, this decomposition v=vp+v,,
+v, is uniquely determined [17]. Constraints (5) and (6) ensure
that vp and v, are properly solved.

Vev=V-vp,=D (7)

VXv=VXv,=w (8)

Now, applying the orthogonal decomposition to the total veloc-
ity field v in Eq. (4) we have

Vi(v,+vp+v,)=Vv,+V(V-vp) -V X (VXuv,)

=VD-VXw 9)
substituting Egs. (7) and (8) in Eq. (9) yields
Viu,=0 (10)

which provides the solution of the harmonic component v,,. Thus,
the KLE construction ensures that all three components of the
velocity field are properly solved.

For incompressible cases, such as discussed here, D is simply
set to zero. For compressible cases, D can be a general distribu-
tion given by a solution analogous to Eq. (3) but for the diver-
gence transport equation (i.e., the momentum equation in diver-
gence form) together with a solution of the mass transport
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equation and adding to Egs. (2) and (3) the terms eliminated by
the application of the incompressibility condition.
Now, provided that we can find a way of imposing on the
velocity field the no-normal-flow condition
v-n=0

(11)

and the no-slip condition

v-7=0 (12)

on the solid boundary () in a way compatible with the vorticity
distribution at that time, we obtain a compatible solution for the
velocity. Then, from this velocity field we produce the right-hand
side of Eq. (3) required to advance the time-integration process to
the next step. In order to impose the no-normal-flow and no-slip
conditions on ¢{) together with the correspondingly compatible
boundary conditions on the vorticity, we designed a scheme based
on two consecutive solutions of the KLE: the first under free-slip
and the second under no-slip boundary conditions on the solid
surface. The algorithmic sequence described below is repeatedly
performed inside the time-iteration process commanded by an
adaptive variable-step size ODE solver. The solution is checked
by the adaptive step size control by monitoring of the local trun-
cation error, which proved to be quite stable for this application.
The algorithmic sequence goes as follows:

(i)  Given a velocity field for the previous time-step v

(which is compatible with the correspondent vorticity
field @"!), compute the next vorticity field &" by
time integration of Eq. (3) at each node of the spatial
discretization. The vorticity field @" is still incompat-
ible with the velocity boundary conditions on the solid
surface d€).

(i) Get @ by setting homogeneous conditions on J€) for

®@". As the nodal values of @" are given from step (i),

this step is accomplished by simply setting to zero the

nodal values of @" on d(}.

Compute a free-slip velocity field, v", by solving the

KLE (i.e., solving Eq. (4) in its week form under the

simultaneous constraints (5) and (6), with D=0). This

solution uses @y as input, applying only the no-
normal-flow (v+-r=0) condition on ) with the nor-
mal derivative of the tangential velocity set to zero.

From v”, compute the new vorticity field as w"=V

X v" applying both the no-normal-flow (v-r=0) and

the no-slip condition (v+7=0) on J€). Thus, " is a

modified vorticity field produced in response to the

induced slip which is compatible with the velocity
boundary conditions on d{). This is the analog of the
vorticity creation process of the early methods men-
tioned above, where vorticity is created in response to

the induced slip [12-14].

(v)  Compute the final velocity field v”, by solving again
the KLE but this time using w" as input and applying
both the no-normal-flow and the no-slip condition on
d€Q. In this way, v" gives the weak solution for the
velocity field at time-step n, which satisfies the time-
dependent boundary conditions for the velocity, and
simultaneously, its correspondent vorticity field w”" is
compatible with those velocity boundary conditions.

(iii)

(iv)

In steps (iii)—(v) we apply the corresponding time-dependent,
Dirichlet conditions for the velocity on ()., the external bound-
ary of () in the far field.

It is interesting to note that all the physics of the problem is
contained in step (i) and it is solved as an ODE problem on the
vorticity. Steps (ii)—(v) are concerned with the computation of a
spatial solution for the velocity field which is compatible with
both: the time-evolved vorticity distribution obtained in (i) and the
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time-dependent boundary conditions for the velocity. Setting ho-
mogeneous conditions on € in step (ii) makes the vorticity field
consistent with the free-slip solution of the velocity field to be
computed in step (iii). Then, enforcing of the no-slip condition on
Q) in step (iv) gives the vorticity values in the boundary in re-
sponse to the induced slip. As was mentioned above, this is the
analog of the vorticity-creation process typically found in early
hybrid and nonprimitive methods. Thus, we obtain our compatible
vorticity boundary conditions on the solid surface by sequence of
two solutions of the KLE under a different set of velocity bound-
ary conditions. These two projectional operations of integral char-
acter applied on the velocity field (and performed inside each time
step) ensure that the vorticity evolves in time in a way compatible
with the time-dependent velocity boundary values. As was men-
tioned above, the algorithmic sequence defined in (i)—(v) is repeat-
edly performed inside the time-iteration process commanded by
an adaptive variable-step size ODE solver. We tested a predictor-
corrector (ABM-PECE) solver and a fifth-order adaptive Runge-
Kutta solver (see [18]), both with satisfactory results.

The algorithmic sequence defined in (i)—(v) has the advantage
of producing a complete decoupling between the time integration
of the vorticity transport equation and the space solution of the
Poisson equation for the velocity field. The linear spatial solution
defined in (4)—(6) (i.e., the KLE) can be implemented in just one
variational formulation. This implementation leads to a global ma-
trix which is independent both of time and of the particular con-
stitutive relation of the continuum media. Then, this matrix can be
factorized at the moment of assembling and its triangular factors
used as many times as needed so long as we are using the same
grid. As we said, this is so even for problems with different con-
stitutive relations because all the physics of the problem is taken
into account only in the time-integration process for the vorticity,
i.e., the spatial solution is purely kinematic. Thus, the space solu-
tion performed at each time step reduces to a pair of back-
substitution processes where we simply change the right-hand side
vector of the linear system in order to impose the boundary con-
ditions consecutively (11) and (12). This scheme simplifies the
issue of obtaining the vorticity in order to satisfy the boundary
conditions on the velocity. Note that it is not a purely local ma-
nipulation performed on the boundary; this double solution of the
velocity field is calculated over the entire domain involving two
projectional operations of nonlocal character.

3 Numerical Implementation of KLE Method

The KLE method is more a mathematical model than a numeri-
cal discretization scheme and is in itself independent of the par-
ticular interpolation adopted for the spatial discretization. Here,
we adopted the tri-quadrilateral finite element method (FEM)
technique for this first implementation of the method because it
was well suited to the kind of problems we were interested in
studying (i.e., the vortex structure of wakes for different body
shapes). The generality of the KLE method allows further explo-
ration of different techniques for discretization in space (like ad-
vanced triangular FEM, spectral elements, etc.) and time (implicit
ODE methods), which is the author’s intention. The actual dis-
cretization is based on the use of nine-node biquadratic isopara-
metric finite elements, which, though “expensive” in computa-
tional terms, possess a high convergence rate and, due their
biquadratic interpolation of the geometric coordinates, provide the
additional ability of reducing the so-called skin error on curvilin-
ear boundaries when compared to linear elements. Figure 1 shows
the biquadratic interpolation functions (K%, k=1,...,9) of the
nine-node isoparametric element on its natural system of coordi-
nates (r,s) (for a detailed description of the isoparametric-element
technique and its corresponding interpolation functions see [19]).

In order to combine the advantages of the nine-node quadrilat-
eral isoparametric element with the geometrical ability of a trian-
gular grid to create suitable non-structured meshes with gradual
and smooth changes of density, we implemented what we called
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Fig. 1 Interpolation functions of the nine-node isoparametric
element showing its natural system of coordinates, node nu-
meration, and three examples of functions: for a corner node
(node 3), for a central-lateral node (node 8), and for the central
node (node 9)

tri-quadrilateral ~ isoparametric elements [20,21]. The tri-
quadrilateral elements consist of an assembling of three quadrilat-
eral nine-node isoparametric elements in which each triangle of a
standard unstructured mesh is divided into. Figure 2 shows a sche-
matic example of a mesh of tri-quadrilateral finite elements ob-
tained from the original triangular discretization.

By static condensation of the nodes that lie inside the triangle,
we can significantly reduce the number of nodes to solve in the
final system, subsequently recovering the values for the internal
nodes from the solution on the non-condensable nodes. Figure 3
shows a schematic view of the internal topology of the tri-
quadrilateral element including the in-triangle global numeration
of the nodes and indicating the three nine-node subelements (I)—
(D). The internal nodes 13—19 may be expressed in terms of
nodes 1-12 which lay on the elemental boundary following the
classical procedure for elemental condensation (see [19]). This
process of condensation allows us to reduce the size of the new
system to solve to approximately 40% of the original system. The
use of the static condensation procedure is attractive not only
because it reduces the size of the stiffness matrices arising in
finite-element and spectral-element methods but also because it
improves the condition number of the final condensed system.
This is related to the properties of the Schur-complement tech-

Fig. 3 Schematic view of the internal topology of the tri-
quadrilateral element. Subelements (I)-(lll) are modeled by
standard nine-node isoparametric interpolation. Numbers 1-19
indicate the in-triangle nodal numeration.

nique. The condensed system is essentially the Schur complement
of the interior-node submatrix in the non-condensed original sys-
tem.

A further advantage of the tri-quadrilateral scheme is that it
may be directly extended to the use of quadrilateral spectral ele-
ments, which may handle complicated geometries while preserv-
ing the fast convergence properties of spectral discretizations.

As was mentioned above, none of the matrices involved in the
finite element solution depend on @ nor ¢, so they can be com-
puted once for a given mesh, stored and used as many times as

needed to compute the solution for the discrete velocity field V.
The global matrix of the system is symmetric and positive defi-
nite, so it lends to factorization by Cholesky decomposition and

its triangular factor is repeatedly used to solve v through back
substitution.

For the implementation of the time-integration procedure we
evaluate the right-hand side of Eq. (3) applying the corresponding
differential operators onto the discrete velocity field V calculated
following steps (ii)—(v) in Sec. 2. The normal procedure to calcu-
late derivatives on the nodes of a mesh of isoparametric elements
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Fig. 2 An example of a mesh of tri-quadrilateral finite elements obtained from a standard triangular discretization
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Fig. 4 An example of a mesh of 2828 tri-quadrilateral finite
elements and 34,216 nodes used for the present analysis,
which gives a total of 14,420 nodes after static condensation
(geometrical coordinates are given in diameters)

consists in computing the derivatives in the Gaussian points adja-
cent to each node and interpolate their results following several
alternatives techniques. A detailed description of this procedure
can be found in [19]. In our case we used area-weighing interpo-
lation which proved to be very effective. The contribution of each
Gaussian point to its corresponding node depends on the consti-
tution of the mesh and can be calculated at the moment of assem-
bling. A set of arrays that perform the differential operations is
assembled simultaneously with the finite-element matrices, so
they can also be computed once for a given mesh, stored and used
as many times as needed to provide evaluation of Eq. (3) right-
hand side for an advanced package ODE solver. We choose a
multivalue variable-order Adams-Bashforth-Moulton predictor-
corrector (ABM-PECE) solver with adaptive step size control
which proved to be quite efficient for this application. We also
tried a fifth order adaptive-step size Runge-Kutta algorithm with
good results. For the first DNS low-Reynolds-number applications
of the KLE method, the function proves to be smooth enough for
the adaptive ABM-PECE algorithm to work very efficiently, in
these smooth cases the predictor corrector outperforms other al-
ternatives like the Bulirsch-Stoer method [18].

4 Some Examples of Application of KLE Method

We first show some results produced by the KLE method for
the well-studied case of a circular cylinder started impulsively and
then subjected to steady translational motion through fluid other-
wise at rest. Figure 4 shows an example of a mesh of 2828 tri-
quadrilateral finite elements and 34,216 nodes used for the present
analysis, which gives a total of 14,420 nodes after static conden-
sation.

We shall see results at several values of Reynolds number, Re
=Ud/ v, where U is the horizontal translational speed of the cyl-
inder, d its diameter, and v the kinematic viscosity of the fluid. We
compare our two-dimensional flow simulations on the range
5<Re< 180 to experimental measurements and flow visualiza-
tions. Figure 5 shows velocity arrow plots taken from our compu-
tations superimposed on two aluminum-dust flow-visualization
plates due to S. Taneda (taken from [22]). The arrows are plotted
out of scale in order to make the flow direction visible, especially
in the vicinity of stagnation points. This scaling tends to exagger-
ate minor alterations in symmetry due to round-off error.

In the range 5<Re<40 we measured the length (s) of the
stationary twin-vortex wake from the rear stagnation point on the
solid surface to the confluence point at the tail of the wake, and
we compared our results to the classical experiments of [23]. The
results for the non-dimensional length s/d against Re are shown
in Fig. 6. Overall the agreement between computations and ex-
periments is very good.

As a second test case we considered the formation of the famil-
iar Kdrmdn vortex street behind a translating cylinder. Figure 7
shows a comparison between a smoke-in-air flow visualization
due to M. M. Zdravkovich (taken from [22]) and the vorticity field
produced by our numerical method at the same Reynolds number.
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Fig. 5 Comparison of flow visualizations by Taneda and arrow
plots from numerical results for the twin-vortex wake behind a
cylinder at (a) Re=13.05 and (b) Re=26

We show a symmetric gray-scale map so areas of both positive
and negative vorticity appear clear while zones of low vorticity
appear dark. The smoke signal in the experimental photo, and the
magnitude of vorticity displayed from the computation are, of
course, not the same. Differences between the experimental image
and the numerical plot are related to different diffusivity of smoke
used as tracer in the experimental image and the diffusive prop-
erties of vorticity which is shown in the numerical plot. Neverthe-
less, due to the fact that in two-dimensional flow the vorticity
transport equation coincides with the transport equation of a pas-
sive scalar, comparisons of vorticity plots with streakline flow-
visualization images are very useful because they allow to check
the structure of the wake. Those comparisons constitute a very
strict test for any vorticity-velocity approach because they give an
idea of the history of the wake. In unsteady flows streaklines
represent the integrated development composed of all previous
distortions incurred along the way from the point of introduction
upstream of the point of observation. In a vorticity-velocity
scheme, if the transport of vorticity is not accurate, the entire
structure of the wake is affected. Here, the correspondence in the
spacing, and even the shape of the vortices, lends considerable
confidence to the fidelity of the numerical simulations. The typical
CPU time to develop a Kdrmdn-vortex-street wake 70-diam-long
downstream of the cylinder for Re=140, using a mesh like the one
shown in Fig. 4, is about 16 h in a standard Pentium-4 PC.

As our third test case, we measured the dominant frequency, f,
of vorticity fluctuations at a set of points in the vortex street wake
for the range of Reynolds numbers 50 <<Re <180, and we com-
puted the corresponding value of the Strouhal number (St
=fd/U). The dominant frequency is the same for all the points
probed, and it is clearly defined at an early stage of wake forma-
tion. The amplitude of the fluctuations, on the other hand, displays
a transient state until it reaches its final, constant value somewhat
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Fig. 6 Comparison of the wake length calculated by the kinematic Laplacian
equation method and the experimental measurements by Taneda [23]

downstream. Plotting St versus Re, as shown in Fig. 8, compares
very favorably with the experiments presented by Williamson
[24].

Finally, we have recently started a study on the formation, shed-
ding, and further evolution of periodic vortex-array structures pro-
duced in the wake of forced-oscillating cylinders. Several qualita-
tively distinct wake regimes were observed experimentally
depending on the wavelength of the undulatory motion of the
cylinder and the amplitude of the transverse undulations. For in-
stance, for a certain range in the combination of the wavelength/
amplitude parameters, a pattern in which one pair and a single
vortex are shed in each cycle of the forced oscillation is produced.
This pattern is commonly known as P+S (one pair plus one single
vortex). Figure 9 shows a comparison of a gray scale plot of the
vorticity field calculated by the KLE method with an experimental
laser-fluorescene photograph for an oscillating cylinder at Re
=140. This photo was kindly provided by Prof. C. H. K. William-
son. As in the previous case shown in Fig. 7, differences between
the experimental image and the numerical plot are related to dif-

Fig. 7 Comparison of flow visualization of a Karman vortex
street behind a cylinder at Re=100 by M. M. Zdravkovich with a
gray scale plot of the vorticity field produced by the kinematic
Laplacian equation method at the same value of Reynolds
number
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ferent diffusivity of fluorescene used as tracer in the experimental
image and the diffusive properties of vorticity, which is shown in
the numerical plot.

5 Conclusions and Outlook for Further Work

We have introduced a mathematical-computational approach to
solve the time-dependent flow in a non-inertial frame of reference
attached to a body in translational and/or roto-translational mo-
tion. The KLE method was validated for two-dimensional direct
numerical simulation (DNS) applications against experimental re-
sults for incompressible flow around circular cylinders at low
Reynolds number, finding very good agreement.

As we have seen above, the basic formulation of the KLE is
three dimensional and has no special requirements on the rate-of-
expansion distribution which is imposed. It implies that the

02 T T T T T T T

o Experimental data
—— Experimental best-fit line
O Numerical results
T

0.11 . . . .
100 120

Re

140 160 180

Fig. 8 Comparison of the Strouhal number calculated by the
kinematic Laplacian equation method and the experimental
measurements by Williamson [24] for Re<180
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Fig. 9 Comparison of flow visualization of a P+S wake of an
oscillating cylinder for Re=140 by C. H. K. Williamson (private
communication to H. Aref) with a gray scale plot of the vorticity
field produced by the KLE method at the same Reynolds
number

method can be extended to the analysis of compressible flows,
provided that we find a way of dealing with compatible boundary
conditions for the rate of expansion in an analog way as we do
with the vorticity.

Since it is a new approach, we are still exploring KLE method
capabilities to manage higher Reynolds-number flows in DNS,
and its potential to be extended to large eddy simulation (LES)
applications. The fact that the linear spatial solution provided by
the KLE is purely kinematic with all the nonlinearities and the
material constitutive properties remitted to the high-order adaptive
time integration, favors the solution of problems with more com-
plex constitutive relations like non-Newtonian, plastic or visco-
plastic flows. And the same argument may be applied to the adop-
tion of turbulence models for a future LES implementation of the
method.

The KLE is based on a universal vectorial relation, so it can be
used to solve any vector field provided that we can solve a trans-
port equation for its divergence and curl. This together with the
fact that time is the only iteration variable present, makes it pos-
sible to extend its application to other physical problems like elec-
tromagnetic fields. It is also possible to couple the fluid analysis
with other physical processes (e.g., heat transfer or chemical re-
action) by adding more equations to the ODE system, using grids
with different densities for problems with different scales.

Regarding the numerical implementation of the KLE method,
the techniques mentioned above: Cholesky decomposition/back
substitution for the spatial solution, and adaptive predictor-
corrector solver for time integration, prove to be very efficient for
a two-dimensional low Reynolds number implementation of the
method in a sequential code. In view to solve problems in com-
plex geometries in three-dimensional applications which will re-
quire a substantial number of nodes (leading to large sparse sys-
tems) for the spatial discretization, it will be necessary to turn to a
parallel version of the KLE code. This can be done in a relatively
easy way: there are several parallel-program packages including
parallel versions of the top ODE solvers and evaluation of our
right-hand-side term involves matrix products that can be easily
parallelizable. Concerning the solution of our linear system, back
substitution is essentially a sequential process, then it should be
replaced by an iterative parallel linear solver. For a symmetric
positive-definite matrix like ours, the preconditioned conjugate
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gradient method constitutes the first option, using the triangular
factor from an incomplete Cholesky decomposition as precondi-
tioner to accelerate convergence (like before, this incomplete
Cholesky factor can be computed once an used repeatedly). Re-
garding the time integration process, the adaptive ABM-PECE
solver works at its best for smooth functions. This situation could
change when we try to extend the KLE method to problems with
more complex constitutive relations or to the analysis of coupled
physical processes where different time scales are likely to appear.
If the function is no longer smooth, a recommendable alternative
to the ABM-PECE solver is the adaptive Bulirsch-Stoer algorithm
with modified midpoint integration and Richardson extrapolation
[18]. If different time scales are present, the possibility of stiffness
arises and then a Bulirsch-Stoer solver with semi-implicit mid-
point integration is recommendable.

Finally, we may emphasize KLE flexibility to manage different
trajectories with translational and rotational acceleration and its
use of unstructured meshes. This method gives us a useful tool to
study the vortex structure of wakes for different body shapes and
motions. We are using this tool to explore complex vortex wake
patterns in the wake of forced oscillating cylinders at low Rey-
nolds number, focusing on the process of splitting which charac-
terizes the formation of P+S and similar structures. We hope to
use the numerical tool developed here to continue with such ex-
plorations in the future.
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media and of the flow theory of plasticity. The model is based on an extension of the
well-known MRS Lade model whereby the suction and the effective stress tensor are
introduced as additional independent and dependent stress components, respectively.
Consequently the cap and cone yield conditions of the MRS Lade model both in harden-
ing and softening as well as the internal evolution laws in these regimes are redefined to
include the dependency on the suction. The paper illustrates the predictive capability of
the extended MRS Lade model for partially saturated soils. Finally, the condition for

discontinuous bifurcation in elastoplastic partially saturated porous media as well as the
localized failure predictions of the proposed material formulation for different suctions
and stress states are also analyzed and discussed. [DOIL: 10.1115/1.2202349]

1 Introduction

In the last years significant attention has been directed toward
the development of constitutive theories for partially saturated
soils. These materials are characterized by particular and complex
response behaviors which strongly differ from those correspond-
ing to both dry and saturated soils. Actually, the physics and en-
gineering principles involved in dry soils are essentially the same
as those involved in saturated soils. The main difference between
a completely dry and a completely saturated soil is related to the
compressibility of the pore fluid. The water in a saturated soil is
basically incompressible. The water becomes compressible as air
bubbles appear in the water.

From phenomenological observation we know that below the
water table, the pore-water pressures are positive and the soils are,
in general, saturated. However, above the water table, the pore-
water pressures are, in general, negative. The negative pore-water
pressures above the water table are mostly referenced to the pore-
air pressure. The difference between the pore-air pressure and
pore-water pressure is called the matric suction. Suction in an
unsaturated soil is made up of two components, namely, matric
suction and osmotic suction. The sum of the two components is
called total suction. The osmotic suction is a function of the
amount of dissolved salts acting in the pore fluid, and written in
terms of a pressure. The matric suction is of primary interest be-
cause it is the stress variable which is strongly influenced by en-
vironmental changes.

Among the different experimental observation-based elastoplas-
tic models for partially saturated soils in the literature, the model
by Alonso et al. [1] is one of the most representative ones. They
adopted two independent stress variables, i.e., the total stress in
excess of pore air pressure and the suction. Similar to this model
are the constitutive formulations proposed by Schrefler and Zhan
[2], Cui et al. [3], Bolzon et al. [4], Wheeler and Sivakumar [5],
and Kohgo et al. [6]. A comprehensive review of the different
proposals is given by Gens [7]. Recently, Khalili [8] proposed a
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constitutive model based on the effective stress concept. However,
in their detailed formulation of the model Loret and Khalili [9]
included the suction as an independent variable in the yield func-
tion and plastic potential, in addition to the effective stress and the
suction dependent hardening parameter.

Contrary to the formulation of constitutive equations for par-
tially saturated soils, the analysis of the conditions for discontinu-
ous bifurcation in the form of localized failure has not received
considerable attention so far. Actually, the intrinsic hydro-
mechanical coupling of partially saturated porous media and the
presence of the suction in the constitutive equations strongly af-
fects the localized failure indicators. As a consequence, both the
solutions for discontinuous bifurcation as well as the critical di-
rections for localization depend not only on the mechanical non-
linear properties of the material formulation, i.e., yield condition,
nonassociativity, hardening/softening evolution law, etc., but also
on the hydraulic features of the deformation history.

In this work an elastoplastic constitutive model for partially
saturated soils is proposed. The model is an extension of the
MRS-Lade model by Sture et al. [10], and is a further develop-
ment of Lade’s three-invariant model for cohesionless soils. The
proposed elastoplatic material model, the extended MRS-Lade
model, is described in the space of the three effective stress in-
variants and of the suction, which is introduced as a new indepen-
dent variable.

The constitutive equations of the proposed model are also ana-
lyzed with regard to the solutions of discontinuous bifurcation. In
this sense, the localized failure predictions and the critical direc-
tions for localization of the extended MRS Lade model are ana-
lyzed for different confinement pressures and suctions.

The results in this work demonstrate the proposed model’s pre-
dictive capability of the response behavior of partially saturated
soils. Also the strong influence of the suction on the failure mode
and on the critical direction for localized failure is demonstrated.

2 Constitutive Stress

Partially saturated soils are generally described in terms of the
constitutive or effective stress tensor o’ and the suction s as a
dependent and an independent stress variable, respectively, where

o=0-1Ip,=0,+1s (1)
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s = (pa _pw) (2)

thereby o is the total stress tensor, o, the net stress tensor, p,, p,,
the pore air and pore water pressure, respectively, and I the
second-order identity tensor. The term effective stress is due to
Loret and Khalili [9], but as pointed out by Sheng et al. [11] who
proposed the name constitutive stress instead, it is not an effective
stress in Terzaghi’s sense.

In many geotechnical applications the air pressure remains con-
stant and, as a consequence, pore water pressure instead of the
suction can be treated as a variable in the model formulation.
Nevertheless, the constitutive formulation in this work is based on
the suction allowing for the most general applications of the
model.

3 Flow Rule-Based Elastoplastic Equations for Par-
tially Saturated Soils

3.1 The General Formulation. Many plasticity models are
characterized by yield surfaces, such as Tresca’s, Mohr-
Coulomb’s, and a variety of cone-cap criteria. Each convex func-
tion Fi(o’,s,k), that in case of partially saturated soils are de-
fined in the space of the effective stress tensor and the suction, can
be treated as an independent yield function, that depends on the
set of hardening/softening variables represented by the array k.
They are subsequently chosen as scalars k; that represent the plas-
tic work or effective plastic strain measures in conjunction with
the plasticity models presented in the following sections.

The intersection of all the sets of stresses defined by F;<0
defines the convex set B{x} of plastically admissible constitutive
stresses o’ and suction s,

B{x}={0",s

F(o',s,k)<0,i=1,2,...,U} (3)

Moreover, the space By {k, €,s} can be introduced in the form
1

if N(&5) >0, i

B\{r.&s}={0" s|F /(0" ,5,k) <0,

=1,2,...,U} (4)

to account for plastic loading and elastic unloading, where the
parameters \;, i=1,2,...,U, define the surfaces that are active.

Plastic loading occurs when at least some Xi>0.

Following Weihe [12], the flow rule can be formulated in terms
of the space of sub-differentials JF), representing a fan of admis-
sible normals at each corner of the composite failure surface

ﬂFA[{O',,S,K, e={al(e’'-0))a=0,Vo, e B)\i{lc,'e,s'}}

)

The nonassociated flow rule-based general constitutive equa-
tions for partially saturated soils can, therefore, be expressed as

o' =E:(e-¢,) (6)

(o' -0,)Ag,=0V 0, B}\[{K, €5} (7)

= hie,} (8)

where €, is the plastic portion of total strain rate tensor €, the

function £ is a first degree homogeneous vector function, and Eq.
(7) represents an associated flow rule for the transformed plastic
strain rate A: €, provided the fourth-order transformation operator
A exists. An associated flow rule for the plastic strain rate €, is
thus defined by A=I, I being the fourth-order identity tensor.

The variational form of the nonassociated flow rule in Eq. (7)
can be reformulated using its rate form and the Kuhn-Tucker
conditions
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U
=2 Am’ X,=0 FX;=0 )
i=1

where

m=A"n’ nf’:a—F', (10)
Jo

is the direction of the plastic flow associated with the yield func-

tion F;. Thereby, and as indicated in Eq. (10), m; and n{ represent

the gradients to the plastic potential G; and to the yield surface F;,

respectively, with respect to the constitutive stresses.

3.2 The Consistency Condition. In elastoplastic constitutive
formulations, the consistency condition during plastic loading
leads to the explicit form of the continuum material operator. In
case of partially saturated soils the consistent condition takes the
form

Fi=nl:a' +nis+rik;=0 i=1.2,....U (11)
with
JF;
$=—t 12
= (12)
JF;
Pt 13
= ok, (13)
ki = Nihy(my) (14)

As compared to the consistency condition of classical or con-
ventional elastoplastic models, Eq. (11) has an additional term n}$
related with the evolution of the suction and the gradient of the
yield surface with respect to the suction. As pointed out by Sheng
et al. [11], many authors have simply neglected this additional
term in their formulations of constitutive equations for partially
saturated soils and, as a consequence, the resulting consistency
conditions are mathematically not rigorous.

After replacing the stress-strain relation

o' =E:(e-¢,) (15)
in Eq. (11), the explicit expression of the plastic multiplier X can
be obtained as

. n:E:e+nIs
=t

T L0 o (16)
n/:E:m; - rh;
Substituting Eq. (16) into the rate form of the flow rule and

then into Eq. (15) leads to the compact form of the constitutive

equations
o'=D,¢€

(17)

whereby, and according to Sheng et al. [14], the extended strain
rate field €’ was introduced. This extended field is composed by
the classical strain rate tensor € and the suction rate § which is
treated as an extra strain rate field

€ =
0 |
The material operator D,,, in Eq. (17) is defined as
D, =(E, E) (19)
with
Em’ ® n”:E
E, =E- 20
& z [ n”.E:m’ + H] 20)
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Es=—E[E:m ®nI:| o)

o Ln“Em7+H

being i=1,2,..
fined as

., U. The hardening/softening modulus H; is de-

H;=~r;h(m]) (22)

Replacing Eq. (17) in Eq. (1) we obtain the evolution of the
total stress tensor
General case ‘B, €+ [-T+E]Is
:E,e-[-1+E]Ip,

P.=py,=0case: :0'=E,€

o=0"+p,J=9p,=0 case:
(23)

4 Constitutive Model for Partially Saturated Soils

The elastoplastic model proposed in this work for partially satu-
rated soils is an extension of the cap-cone MRS-Lade model [10]
for cohesive-frictional drive soils. The main features of the MRS-
Lade model for sands are:

* The yield condition is defined by means of two surfaces: a
cone and a cap.

* The hardening and softening rules both in the cone and cap
regimes are defined in terms of the plastic work rate.

* It includes a nonassociated flow rule which only affects the
volumetric component of the plastic strain in the cone
regime.

These are also the features of the extended MRS-Lade model
for partially saturated soils in this work. In the following the gov-
erning equations of the proposed model for unsaturated soils-like
porous media are presented.

4.1 Yield Condition. The yield condition, see Ref. [13], is
defined in terms of the first invariant of the effective stress tensor
p', of the second and third invariant of the deviatoric stress tensor
q and 6, respectively, and of the hardening/softening variables in
the cone region k.,,.. Defining the effective pressure in terms of
the net mean stress p, and the suction s the generic shape of the
cone takes the form

Fcone = F(Pm(], 0,s, Kcone) =f(q’ 0) - ncone(Kcone)[pn +s5= pc] =0
(24)
with

(g, 0)=q[1 +qi] 2(0) (25)

a
m being a material constant controlling the curvature of the cone
in the meridian (p,,q) planes, with 0<m<1, g, a positive refer-
ence deviator stress, 7..ne the angle of internal friction, and

Inl
=— 26
Pa= (26)
g=\31, (27)
~
3N3 J
cos =L’—i (28)
2\,

Thereby 1,,; is the first invariant of the net stress tensor and J, and
J3 the second and third invariants of the deviatoric stress tensor,
respectively. Finally, g(6) is the Willam and Warnke [14] factor
which assures a continuous and smooth variation of the shear
strength in the deviatoric plane as long as the so-called eccentric-
ity parameter e fulfills the condition 1/2<e<1.

Figure 1 illustrates the projection of the extended MRS-Lade

Journal of Applied Mechanics

Fig. 1
pressive meridian

Extended MRS-Lade model’s failure envelope in com-

model’s yield surface in the meridian plane 7/3 and its variation
with the suction. The intersection of the yield surface with the
p,—s plane defines a loading collapse (LC) yield curve which
accounts for the increase of the elastic regime with the increment
of s while reducing this regime to its minimum when s=0 (satu-
rated soil).

The formulation of the extended MRS-Lade model as the origi-
nal one, implies that a plastic flow is associated for the capped
yield surface. The cap surface is defined by

_ 2
Fcap(pn’q’ 0,5, Kcap) = (pﬂp_pm2> + <}f_~> -1 (29)
with
- -
po= ) (0)
2 1- 2
Pu= %pmpu&a (31)
o 12
fr= ncone[w(l—a)+a][m] (32)
_ Meap. _
l//_ Neone and 2(1 - CY) = lvb (33)
and
pcap(Kcap) =pcap,0(1 + (Kcap)l/r) (34)
pcap,0=p0*+i’s (35)

whereby the dependency of the pressure p,, on the suction in
the last equation is due to Schrefler and Bolzon [15]. This function
does fully define the dependency of the cap yield surface on the
suction. The parameter py+ in Eq. (35) represents the pre-
consolidation pressure for saturated condition while ap,, the
pressure corresponding to the intersection between the cap and the
cone yield surfaces, and i is a model parameter that takes into
account the yield surface growth as increasing suction values.

4.2 Hardening/Softening Relations. The hardening and soft-
ening parameters Keqne and K, are defined in terms of the accu-
mulated plastic work w” that is dissipated during loading along
the actual stress path
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Fig. 2 Model predictions of plain strain passive (PSP) tests at
oy=-172 kPa for different suctions

wh = f o, €dt (36)
and are given in terms of the rate laws
1 +s5-p.\7!
Keone = (u) i (37)
Cconepa pa
) 1 .
Keap = —,,Wp (38)
Ccuppa(pca 2 )

a

where Ceones Ceaps Pus [, and r are material constants. The hardening
variables directly influence the yield surface, as described in Ref.
[11]. Schematically, the relations are defined as 7gpe
= Neone( Keone) ANA Peap=Peap(Keap), according to Eq. (34), such that
the surface exhibits a smooth transition from the elastic to the
plastic regime, that eventually leads to softening behavior.

4.3 Flow Rule. The flow rules devised for the extended MRS-
Lade model assume, similarly to the original formulation by Sture
et al. [10], nonassociated flow for the cone which only affects the
volumetric flow. However, in the present formulation the level of
volumetric nonassociativity in the cone regime is defined in terms
of the suction in order to reproduce the tendency to associated
flow of porous media, i.e., volumetric dilatancy reduction, with
decreasing suction. In the present formulation the plastic potential
function in the cone regime is defined in the form

Gcone(p7q’ 055) =f(q, 0)

- |:I’l + (1 - n)<M)t:| ncone(Kcone)(P +s _Pc)

(39)

where f(q, 0) is defined in Eq. (25), n is a scalar parameter such
that 0<n<1, s,,,, is the maximum suction (water pressure) of the
soil, and # is a parameter controlling the rate that the plastic flow
approaches the normality condition when s — 0, with #=1. From
the last equation it follows that the associated flow G gpe=Fcope 1S
obtained when s=0 and that the maximum level of volumetric
nonassociativity is reached when s=s,,,,, i.e., for dry soils.

5 Discontinuous Bifurcation Condition

In this section the condition for localized failure modes in the
form of discontinuous bifurcation is defined for unsaturated me-
dia. Discontinuous bifurcation or localized failure mode is de-
tected by the formation of spatial discontinuities or jumps in the
kinematic field across singularity surfaces that emerge in a
stressed body. The analysis of localization leads to the same for-
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Fig. 3 Model predictions of plain strain active (PSA) tests at
different suctions

mat and consequent relations as the propagation condition for
plane acoustic waves in solid, see, e.g., Thomas [16] and Hill [17].
The formation of a weak discontinuity assumes that a second-
order singularity appears in the strain rate field, while the dis-
placement rates are still continuous

[[u]]=0"-u"=0 (40)

[[Vall=Va*-Va #0 (41)
here the double brackets indicate the jump. Applying Maxwell’s

theorem [18], the jump condition of the velocity gradient must be
a rank-one tensor

([Val]]=/MeN (42)

where N is the normal to the discontinuity surface, M defines the
jump direction, and y the jump magnitude. Using the strain defi-
nition of classical continua, the strain rate jump takes the form

[ell=i7NeM+MaN) (43)

Under the assumption of a continuous water pressure field, i.e.
[[s1]=0 and assuming that at the onset of localization both sides
of the singularity surface are in plastic loading state, the jump of
the total stress state follows from the elastoplastic constitutive law
(39) and the strain rate jump (43) as

[([o]]=[[6"1]= ¥E,,:(N ® M)

According to Cauchy’s lemma, the traction rate vector t has to
remain continuous across the singularity surface in the interior of
a solid. Therefore, the localization condition takes the form

(44)

Uniaxial Compression
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Fig. 4 Model predictions of uniaxial compression tests. Axial
symmetric stress state (ASS).
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0=[[t]]=N-[[e]]=(N-E,,-N)- (M) =Q,,,- (M) (45)
whereby
Q,=N-E,-N (46)

is the localization tensor and M is the eigenvector that defines the
direction of the strain rate jump. Thus, the discontinuity bifurca-
tion begins when the localization tensor turns singular, i.e., when

det(Q,,) =0 (47)

The last equality represents the localization condition in the
present theory of partially saturated soils and, for the particular
case of a continuous water pressure field considered here, coin-
cides with that of classical continua. In the next section the local-
ization condition will be analyzed during deformation histories of
soils with different degrees of saturation.

6 Model Predictions

The model predictions of the failure response behavior of par-
tially saturated soils are analyzed for different stress paths and
deformation histories. Particularly, the influence of the suction in
the response behavior is evaluated and discussed.

The numerical analyses in this section illustrate the predictive
capability of the proposed model for the plane strain passive,
plane strain active, and uniaxial compression tests.

Figure 2 shows the model predictions of the plane strain passive
tests (PSP) for different suction levels in terms of the constitutive
vertical stress versus the vertical and lateral strain component
plots. This numerical analysis was performed in plain strain con-
dition and under mixed control, i.e., the vertical strain increments,
the constant lateral confinement stress, and the (null) out-of-plane
strain are known while the vertical stress, the lateral strain, and
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Fig. 6 Localization analysis at peak stress of PSP tests
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Fig. 7 Localization analysis at residual stress of PSP tests

the out-of-plain stress are unknown. The results in Fig. 2 clearly
illustrate the strong influence of the suction in the response behav-
ior of partially saturated soils in terms of the limit stress, the
ductility, and the lateral strain. Particularly, we observe that with
increasing suction a reduction of the ductility takes place together
with an increment of the peak stress and of the lateral strain. This
agrees very well with the features of the partially saturated soils
response behavior.

Figure 3 illustrates the prediction of the model for the plane
strain active tests (PSA) with a different level of the suction in
terms of ¢ and the second invariant of the deviatoric strain tensor
e. These tests were also performed under mixed control. However,
and contrary to the PSP case, the applied vertical strain in the PSA
tests is in the tensile direction. The results in Fig. 3 as the previous
ones in Fig. 2 demonstrate the significant influence of the suction
in the response behavior of partially saturated soils under plane
strain condition.

Finally, Fig. 4 depicts the proposed model predictions of the
uniaxial compression tests in axial symmetric stress condition for
different suction levels. Although a very ductile behavior is ob-
served in the analysis with the lowest suction, s=10 kPa, the re-
sponse behavior exhibits a peak load and a softening regime. This
is a remarkable difference with the plane strain compression
analysis in Fig. 2 whereby a continuous hardening regime without
axial stress degradation can be observed when s=10 kPa. Actu-
ally, the more ductile behaviors in the PSP tests as compared to
those of the uniaxial compression tests in axial symmetric stress
state are mainly due to the presence of the confinement stress (o)
in the first ones. The comparative analysis between the results in
Figs. 2 and 4 leads to the conclusion that the influence of the
suction in the overall response behavior reduces with increasing
confinement pressure, i.e., see the stronger dependency of the
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Fig. 8 Localization analysis at final stage of PSA tests
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Fig. 9 Localization analysis at peak. Uniaxial compression
test in axial symmetric state.

peak load on the suction in the tests without confinement pressure
in Fig. 4 when compared to the results in Fig. 2.

7 Localized Failure Predictions

The localized failure condition was analyzed at different stress
states along the PSP, the PSA, and the uniaxial compression tests
of Figs. 2—4, respectively.

Figure 5 illustrates the localized failure analysis at 90% of the
peak load performed in the PSP tests. At this level of the axial
stress the conditions for localized failure are fulfilled for the first
time in the PSP test with the largest suction s=400 kPa as can be
observed in Fig. 6. The other two tests with s=100 kPa and s
=10 kPa indicate diffuse failure as the localization tensor remains
nonsingular. The results in Fig. 5 also indicate that the critical
direction for localization varies with the suction. In other words,
both the failure mode (diffuse or localized) as well as the orien-
tation of the potential or critical shear band depend on the satura-
tion degree of the soil.

The localization analysis in the PSP tests was also performed at
peak and at the residual stress and the corresponding results are
depicted in Figs. 6 and 7. We observe in these figures that the
localization tensor remains positive defined up to the final stage in
the test with the minimum suction s=10 kPa, while in the other
two tests with larger suction the localization condition was ful-
filled. Therefore, we conclude that the reduction of the suction
suppresses localization or discontinuous bifurcation and lead to
diffused or continuous failure modes. Moreover, the fact that al-
ready for s=10 kPa no localized failure is obtained in the PSP test
also demonstrates that the stabilizing effect of the reducing suc-
tion takes place before full saturation of the soils.

The results of the localization analysis at residual stress of the
PSA tests are shown in Fig. 8. As before, we observe that both the
failure mode and the critical localization direction depends on the
saturation degree of the soil. However, in the PSA tests the stabi-
lizing effect of the reducing suction with regards to discontinuous
bifurcation takes place for considerable lower values of the suc-
tion, corresponding almost to fully saturated soils. In other words,
for the same level of confining pressure the dependency of the
failure mode in the suction is more relevant in the PSP tests than
in the PSA ones.

Finally, Fig. 9 describes the performance of the localized failure
indicator at peak load of the uniaxial compression tests under
axial symmetric stress state with s=10 kPa, s=100 kPa, and s
=400 kPa. In this figure the performance of the localization indi-
cator corresponding to the classical MRS-Lade model is also

1044 / Vol. 73, NOVEMBER 2006

shown. These results agree with the observations by Peric [19] in
the sense that the classical MRS-Lade model does not lead to
localized failure in axial symmetric stress state. However, they
show that even in this stress state the destabilizing effect associ-
ated with the increasing suction is important and leads in the
extreme case, i.e., when s=400 kPa, to localized failure mode.

8 Conclusions

An elastoplastic constitutive theory for partially saturated soils
is proposed on the basis of the well-known MRS-Lade model. The
proposed model is defined in the space of the effective stresses
and of the suction which strongly influence the shape of the maxi-
mum strength envelope and of the yield conditions. The flow rule
of the so-called extended MRS-Lade model is based on a re-
stricted nonassociate whereby only the volumetric plastic flow in
the cone regime is nonassociate.

The predictive analysis of the proposed model demonstrates its
capability to reproduce the most relevant features of partially satu-
rated soil response behaviors. On the other hand, the localization
analysis performed with the model demonstrates that the incre-
ment of the suction is related to a destabilizing effect as discon-
tinuous bifurcations in the form of localized failure take place
instead of diffuse or continuous failure modes. The results also
illustrate the relevant influence of the suction in the critical direc-
tions for localization.
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1 Introduction

Heat treatment of metallic alloys is a complex thermomechani-
cal process involving solid state metallurgical transformations that
change both the thermal and the mechanical properties of materi-
als. This process is widely used in industrial applications to re-
lease internal stresses, reduce fragility, improve machinability, or
modify properties like hardness or strength to satisfy the require-
ments of a definite application. However, a badly designed heat
treatment can cause undesirable strains and stresses, and also
cracking. This fact must be taken into account when designing the
heating and cooling sequences in the process.

Numerical simulation of heat treatment has been the subject of
much research work focusing either on thermal and mechanical
analysis of the process [1-4] or on aspects of material modeling
[5-8].

Material models capable of accounting for variations in thermal
and mechanical properties due to temperature and metallurgical
structure changes are a key point to simulate the thermomechani-
cal evolution of parts subjected to heat treatment. A first type of
models exists that describe the microstructure evolution as a func-
tion of alloy composition, temperature, and cooling time, repro-
ducing either isothermal (TTT) or continuous cooling (CCT) dia-
grams for different alloys and chemical compositions [9-14].
Once the microstructure is known, a second type of model de-
scribes material properties as functions of microstructure, alloy
composition, and temperature [7,8]. Using models of both types,
we can predict the material properties needed for thermomechani-
cal computations.

The latter procedure is useful to develop material models for a
broad range of well-known alloys (carbon and low-alloy steels,
austenitic stainless steels, etc.). However, as Taleb points out [15],
its effectiveness is very limited for special alloys (e.g., for high-
alloy white iron) since the model obtained is not able to represent
with accuracy the material properties observed experimentally.
Taleb proposed several corrections to the standard models to re-
produce material properties in the alloys he modeled.
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erties, which are dependent on temperature and microstructural composition, are
rewritten for the purpose of the analysis as functions of temperature and time. Results of
thermo-metallurgical analysis are taken as data for the subsequent mechanical analysis.
The simulation was successful and proved the causes of failure during heat treatment of
a centrifugally cast three-layered Hi-Chrome work roll. [DOI: 10.1115/1.2198247]

In this work, we follow an alternative way to represent material
properties for heat treatment simulation. We redefined material
properties as functions of time and temperature, by merging TTT/
CCT diagrams with curves of dependency of thermo-mechanical
properties in terms of temperature and metallurgical composition
a priori. In this way, material properties were represented by
piecewise linear interpolation of the final properties observed in
experiments in terms of time and temperature. The simulations
were done using a commercial finite element software which takes
into account the dependence of material properties on time and
temperature [16].

Section 2.1 describes the numerical model used to simulate
thermo-mechanical processes in heat treatment of ferrous metals.
In Sec. 2.2, a description of the proposed material model is given.
Section 3 presents an application of this model to the simulation
of the heat treatment of centrifugally cast three-layered Hi-
Chrome work rolls, commonly used in steel mills. The simulation
accounted for and reproduced the kind of actual failures observed
during heat treatment of these types of work rolls.

2 Numerical Model

2.1 Thermomechanical Model. The numerical analysis of
heat treatment processes can be made by modeling the time evo-
lution of two coupled problems:

e A thermal problem which involves heating and cooling
of parts and must take into account the variations of ma-
terial properties (thermal conductivity and enthalpy)
caused by temperature and microstructural transforma-
tions as well as heat releasing/absorption phenomena (re-
lated to latent heat), during metallurgical transforma-
tions.

* A mechanical problem which arises when it comes to
predicting stresses and strains generated by thermal
expansion/contraction produced by temperature changes
and also by metallurgical phase transformations.

The thermal problem is nonlinear because material parameters
depend on temperature. The mechanical problem is also nonlinear
because thermal and transformation-induced strains often generate
plastic deformations.

Provided there are no strong mechanical perturbations that
could induce metallurgical transformations (e.g., transformation of
retained austenite to martensite, induced by stresses generated by
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external loads), mechanical phenomena do not affect thermal
properties. Under this assumption we can ignore the dependency
of the thermal model on the mechanical variables, which enables
us to perform an uncoupled thermal analysis followed by a me-
chanical analysis that takes the thermal results as input.

The differential equation describing the thermal problem is

JH(T,m)
Jat

where p is the density, H the enthalpy, 7 is the time, k the conduc-
tivity, T the temperature, and m accounts for the dependency of
material parameters on microstructure.

By assuming both phases have the same density, the relation-
ship between capacity and enthalpy in the presence of phase
change is given by the following expression

p(T) -V((T,m)VT)=0 (1)

B
p(T)H(T!m) = J p(T)Ceff(TJn)dT
A

epc
=f (D p(T)ey (DT + p(T) L,

A
B
+f e p(T)er(T)dT (2)
spc
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Fig. 2 Conductivity versus temperature approximation
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Approximation of temperature-time transformation

where ¢ is the effective (apparent) heat capacity, ¢; and ¢, are
the specific heats for different microstructures, ¢; and ¢, are the
fractions of initial and final microstructural components, L. is the
latent heat necessary for a phase change, spc is the initial tempera-
ture of phase change, and epc the temperature at the end of phase
change.

The dependence of the thermal problem on metallurgical trans-
formations is simulated with an enthalpy model that takes into
account heat capacity of metal, and latent heat exchange occurring
during phase changes.

The dependence of the mechanical properties on material mi-
crostructure is simulated using material models that account for
variations in metallurgical constituents with time. The thermal de-
pendence of the mechanical problem is modeled using a tempera-
ture field calculated in the thermal simulation and given as input
to evaluate the mechanical properties for the mechanical analysis
and to compute the strains.

In the mechanical simulation, we use a classic elastoplastic
model with isotropic hardening, in which the stresses are calcu-
lated as

3)
where o and € are stress and strain vectors, C is the constitutive
tensor, & is the elastic strain, &, is the plastic strain, and & is the
thermal-microstructural strain, which integrates the effect of ther-
mal expansion and volume variations during metallurgical phase

o=C(T,g,,me,=C(T,e,m)(e-¢g,- &),
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Fig. 3 Conductivity versus time/temperature diagram
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changes.

The stress field must satisfy a yield criterion (in this case, the
isotropic Von Mises criterion)

Oy = \/%[(a'x— (r_v)2 + (o, — o'z)2 + (0. - (ry)2 + 6(7§y + 7%1 + 'rfx)]

< Y(T,seq,m) (4)

Since the limit stress Y is a function of the temperature, of the
equivalent plastic strain &,, and of the microstructure, the model
can take into account the variation of material hardening behavior
with temperature.

2.2 Material Model. Most material properties are functions
of temperature and microstructure, and therefore have indirect de-
pendency on variables such as time and maximum heating/cooling
temperature which define material microstructure.

In austenizing processes (heating), the microstructure is mod-
eled as a function of temperature only. In quenching processes
(cooling), the microstructure is a function of temperature and
time. In tempering processes (heating and cooling) the microstruc-
ture is considered as a function of temperature only (the depen-
dency upon temperature and time could be modeled if data about
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Fig. 5 (Left) Work roll main dimensions, (right) FEM mesh

Journal of Applied Mechanics

Crack surface

Fig. 6 Observed cracks in the barrel of work rolls

transformations of retained austenite were available).
Then, for the whole process, we can formulate any general
property u as a function of temperature and time, as follows

w=plT.m(T,0)] = w(T.1) (5)

In order to define the material parameters, we first construct a
map of microstructure as a function of temperature and time using
data about heating and cooling periods, and isothermal (TTT) or
continuous cooling (CCT) diagrams for the quenching cooling
interval, as shown in Fig. 1. Then, for every definite material
microstructure (i.e., austenitic, pearlitic, martensitic), we define
the value of every property as a function of temperature. Figure 2
is an example for the case of conductivity. Finally, by combining
the map of microstructure as a function of temperature and time
with the curves of temperature dependence of the considered
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Fig. 7 Temperature-time-transformation diagram for Hi-Cr iron
(shell)
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Table 1

Convective boundary condition. Time variation of air temperature and heat transfer

coefficients (intermediate values calculated by linear interpolation).

Heat transfer

Time Temp. Time Temp. Time coefficient
[s] [°C] [s] [°C] [s] [Wm™°C™]
0 25 1,590,000 520 0 40
160,000 170 1,620,000 490 <570,000 40
175,000 180 1,675,500 480 570,000 30
290,000 430 1,676,000 80 577,000 50
320,000 420 1,713,300 30 585,000 40
380,000 780 2,200,000 55 585,100 60
381,000 730 2,225,000 65 588,000 65
419,000 680 2,247,000 80 589,000 36
428,000 880 2,265,000 85 595,000 10
430,000 1080 2,311,600 160 599,000 15
440,000 1060 2,330,000 165 600,000 8
481,000 1090 2,380,000 310 613,000 12
500,000 1040 2,410,000 310 615,000 4
<570,000 1020 2,450,000 410 900,000 3
570,000 80 2,473,600 410 1,200,000 3
577,000 30 2,500,000 530 1,275,600 40
600,000 30 2,530,000 510 1,675,500 40
600,100 520 2,550,000 555 1,676,000 10
665,000 520 2,610,000 530 1,705,000 10
665,100 30 2,630,000 570 1,706,000 3
1,200,000 25 2,675,200 540 2,200,000 3
1,275,600 100 2,675,300 30 2,225,000 40
1,297,200 95 2,815,600 30 2,675,200 40
1,394,400 205 2,819,200 60 2,675,300 10
1,416,000 205 2,862,400 60 2,304,800 10
1,545,600 465 2,873,200 30 2,815,500 3
1,556,400 430 2,873,200 3

property, and by using the rule of mixtures for regions with mixed
structure (e.g., austenite+pearlite), a map of the property as a
function of temperature and time (continuous piecewise linear ap-
proximation) can be built, as shown in Fig. 3.

We used a commercial finite element code in which material
properties can be defined as functions of temperature and time
[16]. When using such a standard material model, special care
must be taken to adapt the map of microstructure as a function of
temperature and time to the real quenching cooling process (see
Fig. 4) to avoid reversions in austenite-pearlite and austenite-
martensite transformations. An improvement currently in progress
is the development of a model with the ability to track microstruc-
tural evolution and avoid numerical reversion of physically irre-
versible phase changes.

In the thermal analysis, the material parameters are the enthalpy
and the thermal conductivity. In the mechanical analysis, the ma-
terial parameters are the Young (elastic) modulus, the Poisson
coefficient, the thermal expansion coefficient, and the yield stress.
All of them are modeled following the above-mentioned proce-
dure to account for variations during the heat treatment process.

3 Application Case

3.1 Problem Description. The Hi-Chrome work rolls used in
the initial stages of steel lamination have an exterior layer (shell)

of Hi-Chrome white iron, an intermediate layer of low-alloy iron,
and a core of spheroidal graphite iron. The first two layers are cast
centrifugally in horizontal position, and afterwards the core is
poured statically in vertical position. Typical as-cast dimensions
are shown in Fig. 5.

After casting, rolls are heated from room temperature to
1020°C (with complete austenitization). Then, they are quenched
by cooling in air at room temperature. Finally, they are subjected
to two tempering processes at 480 and 540°C, each one followed
by a slow cooling in air to room temperature.

After heat treatment, some rolls showed cracks near the corners
of the barrel. In all cases the cracks had conic shape, starting at
the end of the barrel in the vicinity of the interface between Hi-
Chrome and interface layers, and ending at the external diameter
of the barrel, approximately 250 mm away from the barrel’s edge,
as shown in Fig. 6.

Even though circumferential cracks in the external diameter of
the roll were observed several hours after the end of the second
tempering, when rolls were already at room temperature, the pres-
ence of black ferrous oxides in the initial zone of the cracks indi-
cated that the cracking started in an intermediate stage of the heat
treatment (at least previously to the last tempering heating). The
aim of this analysis was to determine the stage where cracking
starts, and to confirm the presence of residual stresses which may
explain the advancement of the cracking front up to the external

Table 2 Properties for Hi-Cr iron (shell) in austenitic state

Temperature Enthalpy Conductivity Young’s modulus Secant thermal expansion
[°C] [Tkg™'] [Wm™ °C] [Pa] coefficient [°C™!]
180 0.62E5 18.50 2.07E11 —2.60E-5

250 1.06ES 18.50 2.04E11 —1.00E-5

400 2.11E5 18.60 1.95E11 0.23E-5

620 3.87ES 19.00 1.74E11 0.95E-5

650 4.11ES 19.07 1.69E11 1.01E-5

680 4.40E5 19.12 1.65E11 1.07E-5

720 5.25E5 19.20 1.62E11 1.13E-5

1030 7.91ES 20.00 0.75E11 1.90E-5
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diameter of the barrel.

Ignoring small circumferential temperature differences and
small bending stresses generated by the horizontal mounting of
cylinders in the heater, the problem can be modeled as an axisym-
metrical one. The finite element mesh, built by using axisymmet-
ric triangular elements, is shown in Fig. 5(b). The same mesh is
used for the thermal and the mechanical analyses. A quadratic
interpolation of unknowns (i.e., temperatures and displacements,
respectively) is used in both cases.

Convective boundary conditions were set on the external sur-
face of the roll for the thermal analysis. Convection coefficients
ranging from 5 to 40 W m~2 C~! were used in the different stages
of heating and cooling, depending on the agitation of surrounding
air, as seen in Table 1. The temperature evolution of air is also
displayed in this table.

3.2 Shell Material Data (Hi-Chrome White Cast Iron). The
TTT diagram of a similar alloy was used to determine the position
of the pearlitic nose [17]. The cooling behavior of the shell mate-
rial was determined using data of Hi-Cr white iron without Ni
[18], with a correction of the transformation time to take into
account the influence of Ni and Mo as suggested by Laird et al.
[19]. The diagram is shown in Fig. 7.

The thermal conductivity as a function of temperature and mi-
crostructure was taken from data for high-alloy white iron [17,20].
Enthalpy values were calculated integrating the effective thermal
capacity data [17,20] along the temperature range covered in the
process. In order to calculate thermal-metallurgical strains, a se-
cant expansion coefficient averaged from values found in bibliog-
raphy [18,20] and based on a reference state of pearlitic structure
at 20°C was used.

The elastic modulus as a function of temperature and chemical
composition was obtained from data published by Belyakova et al.
[19,21]. The Poisson coefficient was assumed constant and equal

Table 3 Properties for Hi-Cr iron (shell) in pearlitic-bainitic
state

Young’s Secant thermal

Temperature  Enthalpy  Conductivity  modulus expansion
[°C] Okg'l [Wm'eCc!] [Pa] coefficient [°C™']
~130 0.0 19.00 2.18El11 0.80E-5

180 1.07E6 19.50 2.12E11 0.88E-5

250 1.51E6 21.10 2.09E11 0.98E-5

400 2.56E5 22.00 2.00E11 1.18E-5

620 4.32E5 22.10 1.79E11 1.30E-5

Table 4 Yield stress for Hi-Cr iron (shell)

Yield stress
(pearl./bain.) [Pa]

Yield stress
(austenitic) [Pa]

Temperature

[°C] €,=0.0 €,=0.1 €,=0.0 €,=0.1
0 8.0E+8 10.0E+8
100 7.0E+8 8.9E+8
300 43E+8 5.3E+8 5.0E+8 6.4E+8
620 2.4E+8 3.0E+8 2.6E+8 3.2E+8
650 22E+8 2.6E+8
680 1.9E+8 2.3E+8

720 1.6E+8 1.9E+8

1030 04E+8 0.5E+8

Table 5 Properties for gray iron (layer) in austenitic state

Young’s Secant thermal

Temperature Enthalpy  Conductivity — modulus expansion
[°C] Dkg'l [Wm'eC!] [Pa] coefficient [°C™]
190 0.28E5 29.80 1.12E+11 —2.10E-5
400 1.40E5 31.00 1.06E+11 0.26E-5
600 2.85E5 31.80 0.97E+11 0.94E-5
650 3.31ES 32.00 0.95E+11 1.01E-5
675 3.59E5 32.10 0.94E+11 1.07E-5
700 4.30E5 32.20 0.92E+11 1.10E-5
750 5.52E5 32.50 0.89E+11 1.17E-5
1030 8.01ES 37.00 0.44E+11 1.95E-5

Table 6 Properties for gray iron (layer) in pearlitic-bainitic
state

Young’s Secant thermal

Temperature  Enthalpy  Conductivity  modulus expansion
[°C] [Dkg'l [WmeCc!] [Pa] coefficient [°C™']
0 0.0 42.50 1.22E+11 1.22E-5

190 0.91E5 42.90 1.18E+11 1.28E-5

400 2.08E5 39.90 1.I12E+11 1.35E-5

600 3.48E5 37.10 1.04E+11 1.39E-5

650 3.89E5 36.25 1.01E+11 1.42E-5

Table 7 Properties for SG iron (core) in austenitic state

Young’s Secant thermal

Temperature  Enthalpy  Conductivity  modulus expansion
[°C] Okeg™'] [Wm'ec!] [Pa] coefficient [°C™!]
190 0.28E5 18.00 1.51E11 —1.90E-5
400 1.43E5 18.20 1.43E11 0.23E-5
600 2.91ES 18.60 1.32E11 0.91E-5
650 3.36E5 18.70 1.29E11 1.01E-5
675 3.65E5 18.75 1.27E11 1.06E-5
700 4.36E5 18.80 1.25E11 1.10E-5
750 5.57E5 18.95 1.20E11 1.17E-5
1030 8.05ES5 20.00 0.60E11 1.95E-5

Table 8 Properties for SG Iron (core) in pearlitic-bainitic state

Young’s Secant thermal

Temperature  Enthalpy  Conductivity — modulus expansion
[°C] Okg'l [WmeCc] [Pa] coefficient [°C~']
0 0.0 39.00 1.65E11 1.06E-5

190 0.93ES 36.65 1.59E11 1.15E-5

400 2.12E5 29.85 1.51E11 1.30E-5

600 3.60ES 25.49 1.40E11 1.36E-5

650 4.04ES 25.00 1.36E11 1.38E-5
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Table 9 Yield stress for gray iron and SG iron (layer and core)

Layer (austenitic)
yield stress

Layer (pearl./bain.)
yield stress

Core (austenitic)
yield stress

Core (pearl./bain.)
yield stress

[Pa] [Pa] [Pa] [Pa]
Temp.
[°C] €,=0.0 €,=0.1 €,=0.0 €,=0.1 €,=0.0 €,=0.1 €,=0.0 €,=0.1
0 6.60E+8 7.90E+8 7.00E+8 8.50E+8
100 6.20E+8 7.40E+8 6.50E+8 7.80E+8
300 4.30E+8 4.30E+8 4.50E+8 5.50E+8 4.50E+8 5.40E+8 4.80E+8 5.80E+8
620 1.60E+8 1.95E+8 1.70E+8 2.00E+8 1.80E+8 2.20E+8 1.90E+8 2.30E+8
650 1.50E+8 1.80E+8 1.70E+8 2.00E+8
680 1.30E+8 1.55E+8 1.45E+8 1.75E+38
720 0.97E+8 1.15SE+8 1.10E+8 1.30E+8
1030 0.18E+8 0.22E+8 0.20E+8 0.25E+8

to 0.28. We assumed the yield stress dependence on temperature
to be equal to that of the ultimate tensile stress for Hi-Cr white
iron [19], scaled according to the room temperature yield stress of
Hi-Cr. An isotropic hardening law was used.

Tables 2—4 show the values of these parameters in terms of
temperature for austenitic and pearlitic/bainitic state. Data for ma-
terial in martensitic state are not included because the evolution of
temperatures during heat treatment of these rolls prevents the for-
mation of martensitic structures.

3.3 Intermediate and Core Material Data (Gray and Sphe-
roidal Graphite Cast Iron). Since the transformation curves of
gray and spheroidal graphite cast iron are similar, the strategy
used to determine their material parameters was the same for both.
After determining the microstructure as a function of time and

temperature, appropriate parameter values were selected. A TTT
diagram for Ni-Mo ductile iron [22] was used to define the mi-
crostructure of the core material as a function of time and tem-
perature in quenching. This diagram is shown in Fig. 8.

The thermal conductivity and the enthalpy as a function of heat-
ing and cooling temperature (obtained by integrating the apparent
thermal capacity) were taken from data published by Auburn Uni-
versity researchers [23].

In order to compute thermal-metallurgical strains, a secant ex-
pansion coefficient based on a reference state of pearlitic structure
at 20°C was calculated from tables of dilatometry in heating and
cooling published by the Auburn Solidification Design Center
[23]. The elastic modulus as a function of temperature was ex-
trapolated from values at room temperature [17] and thermal de-
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Fig. 9 Comparison between calculated and measured temperatures in bar-
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Fig. 10 Temperature evolution during quenching cooling
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pendency of this parameter for pearlitic steels. The Poisson coef-
ficient was assumed constant and equal to 0.26. The yield stress
dependence on temperature was taken from tables for gray and
spheroidal graphite iron of similar composition [24].

Tables 5-9 show the values of these parameters as functions of
temperature, for austenitic and pearlitic/bainitic state.

3.4 Results. A comparison between calculated (continuous
line) and measured (dashed line) temperatures at the midpoint of
the barrel surface is shown in Fig. 9. The agreement between
curves is acceptable for the purposes of the analysis.

The largest differences between temperatures in different points
of the roll, which define the maximum temperature gradients in
the whole process, are found at the initial stage of quenching.
Figure 10 shows a detail of the differences between points located
in the surface of the barrel (P1, P4) and other points situated in the
zones of transition between layers of different materials (P2, P3).
The largest temperature difference predicted by computations be-
tween the surface and the core of the roll was lower than 300°C,
and occurred during quenching.

The evolution of temperatures, principal stresses, and equiva-
lent plastic deformations near the barrel corner, at the zone of
failure, are shown in Figs. 11-15. These plots correspond to dif-
ferent time instants along the complete heat treatment, which were
referred to by letters A-E in Fig. 9.

During the austenizing heating, tensile axial stresses develop in
the external shell. However, as plastic deformations occur during
heating, in the quenching and in the tempering processes the axial
stresses in the shell become compressive. Moreover, large residual
stresses develop and remain at the end of the process because of
the differential deformation of core and layers.

Figure 16 shows the evolution of equivalent plastic strains in
different points near the barrel corner. Most inelastic deformations
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occur during the second half of the austenizing heating process
and during the quenching process, as shown in the plots of evo-
lution of equivalent plastic strain. Only a small increment in plas-
tic strains is found during tempering processes. However, this re-
sult could be influenced by the lack of information about
percentages of retained austenite after quenching and by transfor-
mations of retained austenite during tempering. The magnitude of
inelastic strains found near the interface between shell and inter-
mediate layers (close to 1%) is significant, specially if we take
into account the brittle nature of Hi-Chrome white iron.

These two latter facts suggest that cracks started in the zone
near the interface between shell and intermediate layers during the
last stage of austenizing heating. The residual stresses observed at
the end of the process (Fig. 15) are large enough to propagate
these cracks in the plane perpendicular to the maximum tensile
principal stresses up to the external surface of the barrel, in total
coincidence with the observations (Fig. 6).

4 Conclusions

A model developed to simulate heat treatment of metals was
presented. The approximation used to describe the behavior of
thermo-mechanical variables, which was able to reproduce with
accuracy the material properties observed experimentally, was
found to be useful for special metal alloys. This type of param-
etrization allowed us to make an initial analysis with the small
amount of data available in the literature for this special alloy. The
analysis was very easily refined in regions of interest later on,
when additional experimental data were obtained.

The main drawback of this approach is the need of knowing the
approximate evolution of temperature in time a priori, in order to
compute the resulting microstructure transformation at each point.
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With regard to the analysis and design of work rolls, the results
were of great aid in determining the causes of cracking failures
and proposing preventive measures.

Finally, we should say that these results can be improved by
using an initial stress field computed by an analysis of solidifica-
tion in the casting process, and also by using data about the evo-
lution of retained austenite in the shell material.
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